# Study on Leaky-wave Antennas Using Water-slab

Lin Zhang<sup>1</sup>, Hiroyasu Sato<sup>2</sup> and Qiang Chen<sup>3</sup>

<sup>123</sup>Department of Communications Engineering, Graduate School of Engineering, Tohoku University

## 1. Abstract

In this report, the LWA structure with lossy water as a dielectric slab, named as the Water Leaky-wave antenna (WLWA) is proposed.

Four frequency band WLWAs are evaluated respectively to explore the effect of water loss on leaky-wave antenna gain.

## 2. Structure of WLWA

The structure of WLWA is shown in Figure 1. Leaky wave antenna (LWA) with high relative permittivity slabs was reported <sup>[1]</sup>. There was a method involving the addition of a slab to significantly improve gain was proposed <sup>[2]</sup>. By choosing the thicknesses h and the height dappropriately by

$$d = \frac{m\lambda_0}{2}$$
(1)  
$$h = \frac{(2n-1)\lambda_0}{4\sqrt{\varepsilon_r}}$$
(2)

where *m*, *n* are positive integers. Water is placed at a distance *d* from the ground plane and is used as a slab. A patch with a length  $L_p$  is placed at a distance  $g_2$  from the ground plane. An acryl case is used as a container for carrying the water.



Fig.1. Structure of WLWA

#### 3. Results of experiment

Gain increases in presence of water slab. Antenna 2 GHz will reach the maximum gain 17.1 dBi at 2.06 GHz. 7dB increased compared with the case of patch only at 2 GHz. Gain decreases sharply at 2.5GHz because loss of water is large in high frequency. Therefore, the WLWA can be applied at 2 GHz and  $L_d/\lambda_0$  is 3 on some occasions with high gain requirements.



Fig.2. Experimental results

### 4. Conclusion

In this report, an LWA using water as a slab was evaluated. It was confirmed that WLWA has a maximum gain around 2 GHz considering loss of water. 7 dB increase of antenna gain at 2.06 GHz was obtained even if water loss is included.

### Acknowledgment

The authors are grateful for the work that was partly supported by COI STREAM (Center of Innovation Science and Technology-based Radical Innovation and Entrepreneurship Program). **References** 

 D. R. Jackson and A. A. Oliner, "A Leaky-Wave Analysis of the High-Gain Printed Antenna Configuration," *IEEE Trans. Antennas Propag.*, vol. 36, no. 7, pp. 905–910, 1988, doi: 10.1109/8.7194.
Jackson D, Alexopoulos N. "Gain enhancement methods for printed circuit antennas". *IEEE Trans. Antennas Propag.*, 1985, 33(9): 976-987.