誘電体スラブを用いた漏れ波アンテナの薄型化

Low-profile Leaky Wave Antenna Covered by Dielectric Slab

塚田裕太 今野佳祐 陳強

Yuta Tsukada Keisuke Konno Qiang Chen

東北大学大学院工学研究科

Graduate School of Engineering, Tohoku University

まえがき 1.

WPT, 特に遠方界を用いたWPTにおける問題の1つは, 伝送効率の低さである. このような問題を解決するには, 高利得のアンテナが必須であるが、高利得アンテナは体積 が大きく嵩張るという欠点がある. このような高利得アン テナを薄型化する方法として、誘電体スラブを用いたアン テナが提案されているが[1], 反射板と誘電体スラブとの距 離が半波長必要であり、実用においてはさらなる薄型化が 必要となる.

そこで本報告では,誘電体スラブを用いた漏れ波アンテ ナにおいて, 反射板上に周期的に無給電素子を配列させる ことで薄型化が図れること、またその設計アンテナの放射 特性を明らかにする.

2. 提案アンテナの共振条件

誘電体スラブを用いた漏れ波アンテナを図 1 に示す. 誘 電体スラブを用いた漏れ波アンテナにおいて、反射板に PEC を用いた場合、アンテナの放射電界強度を向上させる ための条件は以下の(1), (2)式で表される [2].

$$a+b=h=\frac{m\lambda_0}{2\cos\theta_0}\tag{1}$$

$$a + b = h = \frac{m\lambda_0}{2\cos\theta_0}$$

$$t = \frac{(2n-1)\lambda_0}{4\sqrt{\varepsilon_r - \sin^2\theta_0}}$$
(2)

一方, 反射板を理想的な完全磁気導体に置き換えた場合, アンテナの放射電界強度を向上させるための条件は以下の (3), (4)式で表される.

$$a + b = h = \frac{(2m - 1)\lambda_0}{4\cos\theta_0}$$

$$t = \frac{(2n - 1)\lambda_0}{4\sqrt{\varepsilon_r - \sin^2\theta_0}}$$
(4)

$$t = \frac{(2n-1)\lambda_0}{4\sqrt{\varepsilon - \sin^2\theta_0}} \tag{4}$$

(3)、(4)式より、反射板を完全磁気導体に置き換えた場 合,アンテナの薄型化が可能であることがわかる.

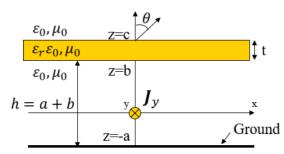


図1誘電体スラブを用いた漏れ波アンテナ

3. 提案アンテナの解析

ここでは, 無給電方形素子を周期的に配置した構造を用 い、提案アンテナを設計する. 誘電体スラブ、MSAを用い た漏れ波アンテナの解析モデルを図 2 に示す. 反射板に PEC を用いた場合と提案アンテナの放射特性を図3に示す.

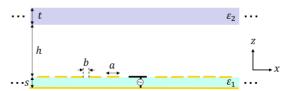


図2反射板上に周期的に無給電素子を配列させた 誘電体スラブ装荷漏れ波アンテナ

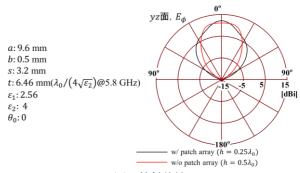


図3放射特性

4. まとめ

誘電体スラブを装荷した反射板付きアンテナにおいて, 反射板上に周期的に無給電素子を配置させることによりア ンテナの利得を保ちながらアンテナの薄型化を実現できる ことを明らかにした.

5. 謝辞

本研究開発は総務省の電波資源拡大のための研究開発 (JPJ000254)によって実施した結果を含む.

6. 文献

- [1] D. Jackson and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. Antennas Propag., , vol. 33, no. 9, pp. 976-987, Sept.
- [2] Y. Sugio, T. Makimoto, S. Nishimura and T. Tsugawa, 'Analysis for gain enhancement of multiple-reflection line antenna with dielectric plates," IEICE Tech. Rep., vol. AP80-112, pp. 7-12, Jan. 1981 (in Japanese)