
IEICE Communications Express, Vol.2, No.8, 359–364

Quantitative study of
computing time of
direct/iterative solver for
MoM by GPU computing

Keisuke Konno1a), Hajime Katsuda2, Kei Yokokawa1,
Qiang Chen1, Kunio Sawaya3, and Qiaowei Yuan4

1 Department of Communications Engineering, Graduate School of Engineering,

Tohoku University

6–6–05, Aramaki Aza Aoba Aoba-ku Sendai-Shi Miyagi 980–8579, Japan
2 Wireless Systems Innovation Laboratory, NTT Network Innovation Laboratories

1–1, Hikarinooka Yokosuka-Shi Kanagawa 239–0847, Japan
3 New Industry Creation Hatchery Center, Tohoku University

6–6–10, Aramaki Aza Aoba Aoba-ku Sendai-Shi Miyagi 980–8579, Japan
4 Sendai National College of Technology

4–16–1, Ayashichuuou Aoba-ku Sendai-Shi Miyagi 989–3128, Japan

a) konno@ecei.tohoku.ac.jp

Abstract: Guidelines for reduction of computing time of direct/
iterative solver for MoM on GPU computing are reviewed. Computing
time of the direct/iterative solver with and without these guidelines
is compared to show the computational efficiency of GPU computing
quantitatively.
Keywords: MoM, GPU, direct solver, iterative solver
Classification: Antennas and Propagation

References

[1] R. F. Harrington, Field Computation by Moment Methods, New York,
Macmillan, 1968.

[2] T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey of numerical
methods for solution of large systems of linear equations for electromag-
netic field problems,” IEEE Trans. Antennas Propag., vol. AP-29, no. 6,
pp. 847–856, Nov. 1981.

[3] S. Peng and Z. Nie, “Acceleration of the method of moments calcula-
tions by using graphics processing units,” IEEE Trans. Antennas Propag.,
vol. 56, no. 7, pp. 2130–2133, July 2008.

[4] E. Lezar and D. B. Davidson, “GPU-based LU decomposition for large
method of moments problems,” Electron. Lett., vol. 46, no. 17, pp. 1194–
1196, Aug. 2010.

[5] D. D. Donno, A. Esposito, G. Monti, and L. Tarricone, “MPIE/MoM ac-
celeration with a general-purpose graphics processing unit,” IEEE Trans.
Microw. Theory Tech., vol. 60, no. 9, pp. 2693–2701, Sept. 2012.

[6] NVIDIA Corporation, “CUDA C Programming Guide,” ver.5.0, NVIDIA
Corp., Oct. 2012.

c© IEICE 2013
DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

359



IEICE Communications Express, Vol.2, No.8, 359–364

[7] The Portland Group, “CUDA Fortran Programming Guide and Refer-
ence,” ver.13.1, The Portland Group, Jan. 2013.

[8] M. Cwikla, J. Aronsson, and V. Okhmatovski, “Low-frequency MLFMA
on graphics processors,” IEEE Antennas Wireless Propag. Lett., vol. 9,
pp. 8–11, 2010.

[9] S. Peng and C.-F. Wang, “Precorrected-FFT Method on Graphics Pro-
cessing Units,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 2099–
2107, April 2013.

1 Introduction

Method of moments (MoM) is well-known as one of the effective techniques
for the numerical analysis of antennas and scatterers [1]. For many years,
various researches have been carried out for improvement of the MoM. One
of the most important research topics for the MoM is the reduction of its
computing time for large-scale problems. Because a conventional direct solver
such as LU-decomposition has been used for solving the matrix equation of
the MoM, the order of computing time of the MoM is O(N3) where N is
the number of unknowns. Instead of the conventional direct solver, iterative
solver such as conjugate gradient (CG) method has been proposed and its
order of computing time is proportional to NitN

2 where Nit is the number
of iterations [2]. The computing time of the iterative solver can be smaller
than that of the direct solver when Nit < N but its solution includes error
due to a tradeoff between computing time and accuracy.

In recent years, graphics processing unit (GPU) has been used as a pow-
erful device to reduce computing time of the MoM [3]. Because the GPU
consists of hundreds of processors, a part of numerical operations in the
MoM can be carried out in parallel when the GPU is applied to the MoM. In
previous researches, the GPU has been used to reduce the computing time
of both direct/iterative solvers in the MoM [4, 5]. On the other hand, vari-
ous guidelines for programming which are suitable for the architecture of the
GPU has been proposed to improve the performance of the GPU [6, 7]. These
guidelines have been applied to the iterative solvers such as MLFMA and Pre-
corrected FFT [8, 9]. However, the effect of these guidelines to computing
time of both direct/iterative solvers has not been evaluated and compared
quantitatively. In addition, it has not been clarified that how each guideline
makes an impact on direct/iterative solvers with different characteristics.

In this paper, at first, various guidelines are briefly reviewed. After that,
these guidelines are applied to in-house direct/iterative solvers. The same
numerical example is solved by using these solvers with/without guidelines
and its computing time is compared with each other. All numerical results
in this paper are obtained from programs written in CUDA (compute unified
device architecture) Fortran and GPU is NVIDIA Tesla C2075.

c© IEICE 2013
DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

360



IEICE Communications Express, Vol.2, No.8, 359–364

2 Review of guidelines for fast GPU computing

In references [6] or [7], it is recommended to keep following three guidelines
in the CUDA programming to maximize the computing speed of the GPU.

1. Data transfer between CPU and GPU should be minimized.
In general, data transfer speed from the GPU to the CPU is relatively

slow compared with the processing speed of numerical operation by the GPU.
Therefore, data transfer between CPU and GPU should be avoided as long
as possible to maximize the computing speed of the GPU.

2. Access to the global memory of the GPU should be coalesced.
Data transfer time from processors to the global memory in the GPU

tends to be longer than computing time of processors. By using the cash and
shared memory which have fast data transfer speed, the number of accesses
from processors to the global memory in the GPU can be reduced and the
computing speed of the GPU becomes faster. However, frequent access from
processors to the global memory in the GPU still cannot be avoided in the nu-
merical analysis of large-scale problems because the size of cache and shared
memory in the GPU is limited and small (e.g. the total size of L1 cache and
shared memory in Tesla C2075 is 64 KB. The size of L2 cache is 768 KB.).
Coalesced memory access has been recommended to reduce the number of
accesses to the global memory. When the memory access is coalesced, pro-
cessors can receive a number of data from the global memory simultaneously
and the number of accesses to the global memory can be reduced drastically.
Therefore, access to the global memory of the GPU should be coalesced to
maximize the computing speed of the GPU.

3. The number of threads per block should be a multiple of 32 [6].
In the GPU computing, numerical operations are divided into many

threads and a number of threads are grouped into a block. Here, thread
means the minimum unit of operation, block means the assembly of threads.
Threads in each block is assigned to processors in SM (streaming multipro-
cessors), where SM consists of many processors and memories. Because each
SM in the GPU of Fermi architecture has 32 processors, the maximum num-
ber of threads which can be executed in parallel is also 32. Therefore, the
number of threads per block should be a multiple of 32 to avoid wasting
processors.

Due to the limitation of space, details of the above three guidelines are
omitted here. For details of the above three guidelines, please refer to [6] or
[7].

3 Numerical examples

In this section, the three guidelines for fast GPU computing which was re-
viewed in the previous section are applied to the CUDA programs of the
MoM. Numerical analysis of a planar scatterer which is divided into a number

c© IEICE 2013
DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

361



IEICE Communications Express, Vol.2, No.8, 359–364

Fig. 1. Computing time of Gauss-Jordan method for nu-
merical analysis of a planar scatterer with CPU
and GPU.

Table I. Guidelines for direct/iterative solver.

Guidelines Direct solver Iterative solver
(Gauss-Jordan method) (CG method)

w/guideline 1 All operations are executed by GPU
w/guideline 2 Memory access to Z matrix is coalesced
w/guideline 3 NT = 96

of wire grid is carried out to evaluate the effect of the three guidelines. All nu-
merical results in this paper are obtained by Intel Xeon CPU E5607 2.27 GHz
without parallel programming and NVIDIA Tesla C2075 GPU. Double pre-
cision real and complex number are used in our in-house programs. All
guidelines for direct/iterative solver for MoM are shown in Table I.

The computing time of Gauss-Jordan method is shown in Fig. 1. It
is found that the computing time of the Gauss-Jordan method becomes so
small by applying the three guidelines to the CUDA programs. On the other
hand, the computing time of the Gauss-Jordan method w/o guidelines be-
comes large mainly due to frequent data transfer and inefficient memory
access. When the Gauss-Jordan method w/o guideline 1 is executed, the
pivot search and sweeping out which require O(N2) and O(N3) of comput-
ing time, respectively, are only executed by the GPU. After the pivot search
and sweeping out are executed by the GPU, Z matrix is modified and the
modified Z matrix is required for the next operation which is executed by
CPU. Therefore, in the Gauss-Jordan method w/o guideline 1, the modi-c© IEICE 2013

DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

362



IEICE Communications Express, Vol.2, No.8, 359–364

Fig. 2. Computing time of CG method for numerical
analysis of a planar scatterer with CPU and GPU.

fied Z matrix whose size is O(N2) should be transferred from GPU to CPU
every time the pivot search and sweeping out are finished. By applying the
guideline 1 to the Gauss-Jordan method, such a frequent data transfer from
GPU to CPU can be avoided and the computing time can be reduced as a
result. For the Gauss-Jordan method, the guideline 2 is the most effective for
reduction of the computing time because memory access of O(N2) is required
every time the pivot search and sweeping out are carried out. From Fig. 1,
it is also confirmed that about 20 ∼ 30% of computing time can be reduced
by applying the guideline 3 to the Gauss-Jordan method.

The computing time of Conjugate gradient (CG) method is shown in
Fig. 2. It is found that the guideline 1 is not effective for reduction of the
computing time. When the CG method w/o guideline 1 is executed, the
matrix-vector multiplication which requires O(N2) of computing time is only
executed by the GPU. Unlike in the case of Gauss-Jordan method, the Z

matrix remains the same from beginning to end of the CG method. Therefore,
the maximum size of data which is transferred between CPU and GPU is
at most O(N) in the CG method w/o guideline 1 when the Z matrix is
once transferred to the GPU. Because the computing time for matrix-vector
multiplication in the CG method is O(N2), which is much larger than that
for data transfer of O(N) in the CG method, the guideline 1 has almost no
effect on the computing time of the GPU. On the other hand, it is found that
the computing time of the CG method becomes much smaller by applying
the guidelines 2 and 3 to the CUDA programs. Because the memory access
of O(N2) is required every time the matrix-vector multiplication is carried
out, it can be said that the guideline 2 is most effective for reduction of

c© IEICE 2013
DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

363



IEICE Communications Express, Vol.2, No.8, 359–364

the computing time. From Fig. 2, it is also found that about 20 ∼ 30%
of computing time can be reduced by applying the guideline 3 to the CG
method.

4 Conclusion

In this paper, three guidelines of direct/iterative solver for MoM by GPU
computing were applied to these solvers. Numerical results showed that
coalesced memory access (Guideline 2) is the most effective technique to
reduce the computing time of these solvers. In addition, it was shown that
the computing time of these solvers can be reduced when the number of
threads per block is a multiple of 32 (Guideline 3). On the other hand, it
was found that the minimization of the data transfer between CPU and GPU
(Guideline 1) is only effective for reduction of computing time of the direct
solver and not effective for the iterative solver.

Acknowledgments

Supercomputing resources at Cyberscience Center in Tohoku University were
used in the process of this research.

c© IEICE 2013
DOI: 10.1587/comex.2.359
Received June 10, 2013
Accepted July 29, 2013
Published August 20, 2013

364


