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Optimization of Block Size for CBFM in MoM
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Abstract—The optimum number of blocks of the CBFM is de-
rived theoretically and demonstrated numerically. The minimum
order of CPU time for the CBFM is shown to be , where
is the number of unknowns. In addition, the optimum size of

overlapping region of the blocks also is investigated numerically.

Index Terms—Characteristic basis function method, method of
moments.

I. INTRODUCTION

M ETHOD of moments (MoM) is well known as one of
the powerful techniques for computational electromag-

netics [1], [2]. In the MoM, unknown current on antennas or
scatterers is obtained by solving matrix equation,

(1)

where is the number of unknown current coefficients, is the
-dimensional voltage vector, is the impedance ma-

trix, and is the -dimensional unknown current vector. In gen-
eral, the matrix (1) can be solved by multiplying by both
sides of (1). However, it is well known that CPU time required
for calculating is by using direct matrix solving
method, such as the Gauss-Jordan method, and cannot be
obtained for large-scale problems easily. Therefore, reduction of
CPU time is indispensable for analysis of large-scale problems.
The iterative technique, such as conjugate gradient (CG)

method, has been proposed as a promising technique for CPU
time reduction in the MoM [3], [4]. Because CPU time per
iteration of the CG method is , total CPU time is smaller
than when the number of iterations is smaller than .
However, the number of iterations in the CG method can be
as large as for an ill-conditioned problem [5]. Some
large-scale problems are ill-conditioned (e.g., at low frequency
[6]), and total CPU time of the CG method for analysis of such
problems is still . Therefore, additional techniques must
be introduced to reduce the CPU time of the CG method.
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Multi-level fast multipole method (MLFMM) with efficient
preconditioner has been introduced to the CG method for
reduction of CPU time per iteration and number of iterations
[7]–[9]. CPU time per iteration of the CG method becomes

by introducing the MLFMM, and number of
iterations can be reduced by the preconditioner. However,
algorithm of the MLFMM is very complicated, and coding also
is difficult. Moreover, effect of the preconditioner depends on
the type of problems as well as several parameters, and it is
difficult to realize constant number of iterations by introducing
the preconditioner in general. Therefore, different approach is
required for fast, stable, and simple solver.
Various fast direct solver, which can realize fixed and short

execution time, also has been proposed. Coppersmith and
Winograd have proposed algorithm to solve
matrix equation, where is a constant coefficient [10]. How-
ever, constant coefficient of the algorithm is large, and the
algorithm is not efficient in practice. Compressed block decom-
position (CBD) also has been proposed as a fast direct solver
[11]. It has been reported that the CBD is an efficient algorithm
for ill-conditioned problem at low frequency, and total CPU
time is [12]. Although the CBD is one of the fastest
direct solver, considerably complicated algebraic operation is
needed for the CBD.
As a fast, stable, and simple algorithm for the large-scale and

ill-conditioned problem, characteristic basis function method
(CBFM) also has been proposed [13]. In the CBFM, is com-
pressed into smaller size of matrix (reduced matrix)
by using characteristic basis function (CBF) and Galerkin’s pro-
cedure, where is the number of blocks. The reduced matrix
can be easily inverted by LU decomposition or Gauss-Jordan
method because . Because the CBFM does not in-
clude iterative procedure, the CBFM can reduce CPU time for
analysis of the ill-conditioned problem. In addition, the CBFM
is directly applicable to the analysis of a complicated model
including dielectric object because algorithm of the CBFM is
based on simple algebraic operation.
Many studies have been carried out for improvement of the

CBFM. Singular value decomposition has been introduced to
reduce lengthy CBF and improve accuracy of the CBFM [14],
[15]. For reduction of CPU time, adaptive cross approximation
(ACA) technique [16] and multilevel approach were utilized
[17]. In recent years, the CBFM also has been applied to some
complicated problems such as large-scale rough terrain profiles
[18], helicopter with partial modifications of the rotor blades
[19], and connected patch array on dielectric substrate [20]. In
the CBFM, the number of blocks and the size of the overlap-
ping region, which improves accuracy of the CBFM, are known
to be key parameters, which determine CPU time as well as ac-
curacy. However, the optimum number of blocks and the size
of the overlapping region, which gives the minimum CPU time
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Fig. 1. Analysis of planar antenna by CBFM.

with enough accuracy, have not been clearly discussed in pre-
vious research.
In this paper, the optimum number of blocks in the CBFM is

derived theoretically. The results of numerical simulation also
is presented to show that the optimum number of blocks min-
imizes CPU time of the CBFM even when the overlapping re-
gion is introduced. Moreover, the size of the overlapping re-
gion also is optimized numerically from the view point of CPU
time and accuracy. Finally, validity of the optimized CBFM is
demonstrated by numerical simulation for three types of anal-
ysis models.
This paper is organized as follows. Section II reviews the

principle of the CBFM. After that, computational cost of
each procedure in the CBFM is tabulated, and the optimum
number of blocks is derived theoretically in Section III. In
Section IV, numerical simulation is carried out to demonstrate
the validity of the derived optimum number of blocks. Over-
lapping region between blocks also is optimized numerically.
In addition, CPU time of optimized CBFM is compared with
that of the CG method and Gauss-Jordan method. Section V
concludes this paper.

II. CHARACTERISTIC BASIS FUNCTION METHOD

In this section, the principle of the CBFM proposed in [13]
is briefly reviewed for the discussion of the optimum number
of blocks. As an example, a planar antenna shown in Fig. 1
is selected as an analysis model to explain the principle of the
CBFM, where is the total number of unknown current coef-
ficients, is the number of blocks, is the number of seg-
ments in a block, and is the number of overlapping seg-
ments in an extended block. is block self/mutual
impedance matrix; and are -dimensional block voltage
and current vector, where superscript “ ” means block, which
does not include overlapping segments, whereas “ ” means ex-
tended block, which includes overlapping segments.
In the CBFM, the analysis model is divided into blocks as

shown in Fig. 1. As a result, impedance matrix , voltage vector

, and current vector are divided into , , and
blocks, respectively. Unknown block current can be expressed
by using CBF and weighting coefficient as follows:

(2)

where is the th CBF in th block and is weighting
coefficient for corresponding CBF. The CBF is called “primary
basis” when and “secondary basis” when . Ex-
pression (2) means the original problem for obtaining -di-
mensional unknown current coefficients is transformed into the
problem for obtaining CBFs and its weighting coefficients,
where is required.
First, the primary basis of all blocks is obtained in the

CBFM. In general, the primary basis has the largest magnitude
in all CBFs and strongly affects the accuracy of the final re-
sults. Therefore, the primary basis should be calculated care-
fully. The primary basis can be calculated accurately by the fol-
lowing extended block matrix equation
together with overlapping segments [13].

(3)

Because size of is much smaller than that of the original
, (3) can be solved directly using the LU decomposition or
Gauss-Jordan method. Calculated is stored in hard disk
for the calculation of secondary basis. On the extended block
current vector obtained from (3), components corre-
sponding to overlapping segments are discarded, and the re-
maining components are stored as the primary basis. Over-
lapping segments are introduced to compensate current conti-
nuity between segments in adjacent blocks and can improve the
primary basis because fictitious edges caused by block division
are removed by overlapping segments. However, quite many
overlapping segments cause more than enough CPU time of the
CBFM. Therefore, size of the overlapping region should be op-
timized from the view point of both CPU time and the accuracy.
Next, secondary basis is obtained as follows:

(4)

where is block matrix in ; is
components of the primary basis , where
; and is the number of overlapping segments between

th block and th block. As described above, stored pre-
viously is used to solve (4). As is the case with calculation of
the primary basis, components of the extended block current
vector corresponding to overlapping segments are dis-
carded, and the remaining components are stored as the sec-
ondary basis. Totally, CBFs can be obtained using (3) and
(4), but these CBFs are not always orthonormal basis. There-
fore, Gram-Schmidt orthonormalization is applied to CBFs.
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TABLE I
ORDER OF CPU TIME IN EACH PROCESS OF THE CBFM

By using CBFs, the original matrix equation is transformed
into the following equation.

(5)

Applying Galerkin’s method, inner products of both sides of
(5) with are taken, and the original matrix equation is
compressed into reduced matrix, where .
Because the size of the reduced matrix is much
smaller than that of the original matrix, the reduced matrix can
be solved by LU decomposition or Gauss-Jordan method. Fi-
nally, unknown current vector is obtained, after weighting co-
efficient calculated by the reduced matrix equation and
CBFs are substituted into the expression (2).

III. BLOCK SIZE OPTIMIZATION

The CPU time of each process in the CBFM is shown as a
function of in Table I. The optimum number of blocks ,
which minimizes the total CPU time can be derived. For the
simplicity, the sum of the only two terms, which have highest/
lowest order of are considered for optimization. As shown
in Table I, the CPU time for calculating primary basis has the
lowest order of , and that for inversion of reduced matrix has
the highest order of . However, CPU time for the calculating
reduced matrix has practically the highest order of than that
for inversion of reduced matrix under the condition of
to reduce the size of the matrix by the CBFM. Based on

the above consideration, the optimum number of blocks can be
derived by

(6)

which yields the optimum number as

(7)

As a result, the minimum CPU time is proportional to
. It should be noted that the effect

of overlapping region is ignored in the above discussion and is
investigated by the following numerical simulation. In addition,
Nyquist’s sampling theorem is clearly violated in (7), and it
is inevitable to include some errors on the current obtained

Fig. 2. Linear dipole antenna.

Fig. 3. Planar scatterer.

by the CBFM when . Therefore, the block size
should be larger than when the error on the current has to
remain constant. However, results of numerical simulation in
Section IV show that the error caused by the violation of the
Nyquist’s sampling theorem is small and tolerated value on
scattering problems.

IV. NUMERICAL ANALYSIS

Numerical simulation is carried out for the three types of
different scattering problems, that is, a linear dipole antenna,
a planar scatterer, and a dipole antenna on a conducting box
shown in Figs. 2–4. Richmond’s MoM is used in this paper, and
all conducting surfaces are divided into wire grid segments [2].
Size of the overlapping region is determined by extended width
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Fig. 4. Dipole antenna on conducting box.

Fig. 5. Relation between number of blocks and CPU time on planar scatterer.

. A desktop computer with Pentium 4 3.6 GHzCPU and 2 GB
RAM was used for all numerical calculation.
Relation between the number of blocks and CPU time for

planar antenna is shown in Fig. 5 as a function of the number
of the blocks . It is found that gives the minimum
CPU time when moderate overlapping region is employed. The
same results are obtained for the analyses of the linear dipole
antenna and dipole antenna on conducting box but are omitted
here. Therefore, it can be said that is the optimum
number of blocks, which minimizes CPU time of the CBFM.
In the above discussion, the number of blocks is opti-

mized from the view point of CPU time. However, accuracy
also should be considered for the optimization of the number
of blocks. Moreover, the size of the overlapping region, which
improves accuracy of the final results, should be optimized be-
cause a large overlapping region causes increase of CPU time
as shown in Fig. 5 . The number of blocks and size
of overlapping region are optimized from the view point of the
accuracy.
There are two key parameters, which determine the accu-

racy of results obtained by the CBFM; extended width and
number of blocks . Extended width determines the size of
overlapping region and improves the accuracy of the results.
The number of blocks determines the size of reduced matrix,
and the current obtained from the reduced matrix can include
some errors by violation of the Nyquist’s sampling theorem. The

Fig. 6. Relation among extended width , number of blocks , and relative
error for linear dipole antenna.

Fig. 7. Relation among extended width , number of blocks , and relative
error for planar scatterer.

Fig. 8. Relation among extended width , number of blocks , and relative
error for dipole antenna on conducting box.

accuracy of the results obtained by the CBFM is evaluated by
the following relative error.

(8)

where and are the current of th segment obtained
by the Gauss-Jordan method and CBFM, respectively.
Relation among extended width , number of blocks ,

and the relative error is shown in Figs. 6–8. In all cases, the rel-
ative error of the CBFM decreases because of the presence of
the overlapping region. A few percent relative error of the cur-
rent can be tolerated in many cases, and the acceptable relative
error can be realized by modification of extended width even
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Fig. 9. Scattering pattern of dipole antenna on conducting box.

Fig. 10. CPU time for analysis of linear dipole antenna.

Fig. 11. CPU time for analysis of planar scatterer.

when as can be seen in Figs. 7 and 8. Therefore, the
optimum number of blocks also is determined as from
the view point of accuracy.
On the extended width, the number of overlapping segments

in linear dipole antenna is small even when because
of one-dimensional segment geometry. Therefore, for linear
dipole antenna, can be considered as the optimum
extended width, which can realize not only accurate results but
also small CPU time. On the other two structures, is
selected as the optimum extended width in this paper.
Scattering pattern of dipole antenna on conducting box ob-

tained using the optimized CBFM is shown in Fig. 9. As com-
pared with the scattering pattern obtained by the Gauss-Jordan
method, small error occurs around a null, but almost the same
pattern is obtained by the optimized CBFM. The CPU time for

Fig. 12. CPU time for analysis of dipole antenna on conducting box.

the analysis of each structure is shown in Figs. 10–12. Conver-
gence criteria of the CG method is relative residual .
The CPU time for the analysis of the linear dipole antenna by
the CG method is because the problem is known as an
ill-conditioned problem [5]. On the other hand, the CPU time re-
quired for analysis by the optimized CBFM is , which
means that the optimized CBFM is more effective than the CG
method for the analysis of the ill-conditioned problem. The re-
maining two problems are not ill-conditioned problems, and CG
method is effective for the reduction of the CPU time. However,
it is found that the optimized CBFM is as effective as the CG
method for the reduction of CPU time.

V. CONCLUSION

In this paper, number of blocks and size of the overlapping
region between blocks in the CBFM were optimized from the
view point of accuracy and CPU time. The optimum number
of blocks, which gives the minimum CPU time of the CBFM
was derived theoretically as , and minimum CPU
time is . Numerical analysis on three types of different
structures was carried out to show that the optimum number of
blocks derived theoretically can realize minimum CPU time. In
addition, the size of the overlapping region between blocks was
optimized by the numerical simulation. Finally, it was pointed
out that the optimum CBFM can realize minimum CPU time
without large loss of accuracy.
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