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Convergence of SOR in MoM Analysis of Array Antenna

Qiang CHEN†a), Member, Qiaowei YUAN††, Nonmember, and Kunio SAWAYA†, Member

SUMMARY Convergence of the iterative method based on the succes-
sive overrelaxation (SOR) method is investigated to solve the matrix equa-
tion in the moment analysis of array antennas. It is found this method can
be applied to the sub domain method of moments with fast convergence
if the grouping technique is applied and the over-relaxation parameter is
properly selected, and the computation time for solving the matrix equa-
tion can be reduced to be almost proportional to the second power of the
number of unknowns.
key words: antenna, array antennas, method of moments, matrix equation,
SOR, iterative method

1. Introduction

It is required to develop an efficient analysis method to in-
vestigate the characteristics of periodic structures such as
array antennas and the metamaterials consisting of a large
amount of small resonant particles which have some inter-
esting electromagnetic properties.

The method of moments (MoM) is one of the efficient
methods for the electromagnetic analysis of array antennas.
However, when the direct method such as the Gauss-Jordan
method is employed to solve the matrix equation appear-
ing in the MoM, the CPU time is proportional to the third
power of the number of unknowns. Therefore, the compu-
tational cost to solve the matrix equation has to be reduced
to analyze large-scale array antennas with a large number of
unknowns.

Iterative methods such as the Conjugate Gradient (CG)
method are efficient to solve the linear matrix equations [1].
Several methods to accelerate the matrix-vector multiplica-
tion for the iterative methods have been proposed, such as
the fast multipole method (FMM) [2], the multilevel fast
multipole algorithm (MLFMA) [3] and the fast inhomoge-
neous plane wave algorithm [4].

The iterative algorithm based on the Gauss-Seidel
scheme has been proposed for the MoM analysis of array
antennas by the present authors and it has been shown that
the CPU time to solve the matrix equation is almost propor-
tional to the second power of the number of unknowns [5].

The SOR method is an iterative method which applies
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extrapolation to the Gauss-Seidel method [6], [7]. This ex-
trapolation modifies the iterative step by introducing the
so called over-relaxation parameter to accelerate the con-
vergence rate. Therefore, the SOR method usually costs
less CPU time than the Gauss-Seidel method if the over-
relaxation parameter is selected properly.

In this research, convergence of the iterative algorithm
based on the SOR technique is investigated to solve the ma-
trix equation in the MoM analysis of array antennas to clar-
ify the effect of the over-relaxation parameter on the conver-
gence. Computational cost of the method is shown by some
numerical examples.

2. Iteration Scheme

The linear array antenna shown in Fig. 1 is used as the analy-
sis model, where the array contains N dipole elements hav-
ing length of 2h and radius of a, and array spacing is d.
Each dipole element is divided into M overlapped dipole
segments acting as the piece-wise sinusoidal basis and test
functions for the sub domain MoM analysis [8]. Once the
impedance matrix [Z] with dimension of NT × NT , which
includes the self and mutual impedance between the divided
segments, is built up, the unknown current vector [I] can be
obtained by solving the matrix equation [Z][I] = [V], where
NT = M × N and [V] is the incident voltage vector with
dimension of NT .

In order to apply the SOR method to solving the matrix
equation, the matrix [Z] is split into [S ] and [T ] so that the
matrix equation becomes

[S ][I] = −[T ][I] + [V], (1)

where [S ] is the lower-left triangular part including the di-
agonal elements of [Z], and [T ] is the upper-right triangular
part excluding the diagonal elements.

Fig. 1 A linear dipole array antenna which is divided into N/K groups
and each group consists of K(≥ 1) neighboring array elements. Each dipole
element is divided into M overlapped dipole segments acting as the piece-
wise sinusoidal basis and test functions for MoM analysis.
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It has been pointed out that the iteration to solve the
above matrix equation appearing in the MoM analysis by
using the conventional Gauss-Seidel iterative method usu-
ally has poor convergence. In order to improve the conver-
gence characteristics of the iteration, a grouping technique
has been proposed in the previous study [5]. The array an-
tenna to be solved is divided into groups and each group
consists of one or several neighboring array elements, so
that the impedance matrix can be decomposed into a num-
ber of sub matrices corresponding to the groups of the array
elements. For example, the analysis model is divided into
groups and each group contains K(≥ 1) array elements as
shown in Fig. 1, where the total array elements are divided
into N/K groups completely. Therefore, the sub matrices
are the basic iteration units rather than the matrix element in
the original SOR iteration method, and the iterating proce-
dure is expressed by:
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the Gauss-Jordan method. ω is the overrelaxation parame-
ter, which should be properly determined to accelerate the
convergence rate. The SOR method becomes the Gauss-
Seidel method if ω is unity. The superscript l indicates the
step number of the iteration. The iteration step is repeated
until the criterion

|I(L)
k − I(L−1)

k |/|I(L−1)
k | ≤ ε (3)

is satisfied for all the dipole segments k (1 ≤ k ≤ NT ),
where Ik is the current on the kth dipole segment and ε is
a small number, which is eual to 1 × 10−8 in the follow-
ing calculation. The initial [Ī](0)

i contains the current on the
ith group without considering the mutual coupling from the
other groups, and is given by

[Ī](0)
i = [Z̄]−1

ii [V̄]i, i = 1, 2, · · · ,N/K. (4)

where [V̄]i is the incident voltage vector of the ith group.
In the iteration scheme, the unknown current on each dipole
segment, which starts from the initial value which does not
include the coupling from neighboring groups, converges to
a value including the mutual coupling step by step.

Fig. 2 Iteration steps required to perform Eq. (2) as function of d for var-
ious ω, when M=9, N=100 and K=1.

Fig. 3 Iteration steps required to perform Eq. (2) as function of ω for
various array spacing d, when M=9, N=100 and K=1.

3. Convergence of Iteration

In this section, convergence of the iterative algorithm given
by Eq. (2) is investigated numerically by solving the linear
dipole array shown in Fig. 1. The parameters of the array
elements are assumed to be 2h=0.5 λ and a = 2.5 × 10−3 λ,
where, λ is the wavelength in free space.

Figure 2 shows the required iteration steps L as a func-
tion of the array spacing d for various ω, where M=9,
N=100 and K=1. It is indicated that a relatively large ω,
for example, ω=0.8 is better than ω=0.2 when d is larger
than about 0.3 λ. However, when d becomes smaller than
0.5 λ, the value of L increases rapidly for ω=0.8, while it
does not increase obviously for ω = 0.2. It is also found
that selecting ω larger than 1 causes divergence when d is
smaller than about 0.5 λ. The convergence due to the value
of ω is further investigated by evaluating the required iter-
ation steps L when ω is changed at a smaller step and the
results are shown in Fig. 3. When the array spacing is rela-
tively large (d=0.5 λ), ω=0.8 is suitable. However, when the
array spacing is reduced to d=0.375 and 0.25 λ, a smaller ω
ranged from 0.4 to 0.6 is a better choice.

When K is increased up to 5, as shown in Fig. 4, the
convergence property in the case of relatively large ω and
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Fig. 4 Iteration steps required to perform Eq. (2) as function of d for var-
ious ω, when M=9, N=100 and K=5.

Fig. 5 Iteration steps required to perform Eq. (2) versus number of dipole
array elements for various ω.

small d is much improved. Therefore, it can be said that it is
effective to obtain a good convergence by using a relatively
large ω and enlarging the size of groups, especially for the
case of a small array spacing.

The required number of iteration steps versus the total
number of the dipole array elements is shown in Fig. 5 in
the case of M=9, K=1 and d=0.5 λ. The curve of ω=0.2 be-
comes almost flat, and the curves of other ω increase a little
bit when N increases, which means the computational cost
consumed by the present method is approximately propor-
tional to N2. However, ω=0.8 is the most suitable value to
obtain a good convergence in this case.

It should be noted that the over-relaxation parameter in
the original SOR method is usually larger than 1 to enlarge
the iterative step in order to improve the convergence. How-
ever, the above numerical studies show that this parameter
used in the present method should be usually less 1 to make
the convergence being stable.

The CPU time for solving the matrix equation versus
the number of array elements N is shown in Fig. 6 and Fig. 7.
The curve of the Gauss-Jordan method is also plotted for
comparison. When each group contains one dipole element,
ω=0.8 is the most effective in saving the CPU time, while
ω=1.2 is the most time-consuming as shown in Fig. 5. If
K = 10 which means that each group contains 10 array el-

Fig. 6 CPU time as function of N for solving matrix equation of half
wavelength dipole antenna array in the case of K = 1.

Fig. 7 CPU time as function of N for solving matrix equation of half
wavelength dipole antenna array in the case of K = 10.

ements, the CPU time is reduced for the relatively large ω
between 0.8 and 1.2, while it does not change obviously for
the case ofω=0.2. These two figures also show that the CPU
time is almost proportional to N2. Compared with N3 re-
quired by the Gauss-Jordan method, the computational cost
saving effect of the SOR method is significant.

4. Conclusions

Convergence of the iterative algorithm based on SOR
method has been investigated to solve the matrix equation
of the MoM analysis for array antennas. It has been shown
that convergence of the SOR method can be improved if the
grouping technique is applied and the over-relaxation pa-
rameter ω is selected properly. From the numerical results,
it can be concluded that a relatively largeω, usually less than
1, can accelerate the iteration when the mutual coupling is
small between the neighboring groups, but might make the
iteration unstable and degrade the convergence if the mu-
tual coupling is strong, or if the array has a large number
of elements. The grouping technique can reduce the mu-
tual coupling between the groups and make the convergence
being stable. Therefore, a relatively large ω together with
the grouping technique can be expected to accelerate the
convergence rate of the iteration. It has been demonstrated
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that the CPU time is approximately proportional to the sec-
ond power of the number of unknowns when the number
is large enough, which has been greatly reduced compared
with a direct method such as the Gauss-Jordan method. How
to choose the ω properly and how to apply the grouping
technique to gather the array elements into groups properly
mainly depend on the geometry of the array elements, array
spacing, input voltage at each array element and so on, and
is somewhat difficult to be determined. These problems are
targets of the future study.
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