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A Three Dimensional Analysis of
Slotted Tube Resonator for MRI

Qiang Chen, Kunio Sawaya, Toru Uno, Saburo Adachi, Hisaaki Ochi, and Etsuji Yamamoto

Abstract— A three dimensional model of a slotted tube res-
onator (STR) used as a probe in the magnetic resonance imaging
(MRI), which is loaded by a dielectric body and surrounded by
a conducting shield, is analyzed by using the variational method
and the dyadic Green’s function of a circular waveguide having
a dielectric core. Three surface current modes are properly
assumed to expand the currents on the STR. The characteristics
such as the input impedance, the resonance frequency, the Q
value, and the magnetic field distribution are obtained to show
the effects of the dielectric body and the conducting shield.
Some theoretical results are compared with the measured data
to confirm the validity of the present analysis.

I. INTRODUCTION

HE MRI (Magnetic Resonance Imaging) system, which

can produce high-quality images in an arbitrary cross
section of a human body, has been recognized as a new
powerful technique for medical diagnosis and has gradually
come to be employed recently in practical situations. In the
MRI system, an RF probe is used to emit a uniform RF
magnetic field over the human body and receive the magnetic
resonance signal from the body for imaging.

Several kinds of RF probes have been developed. The bird-
cage resonator (BCR) [1] is most commonly used for the MRI
under high and low static magnetic field. The characteristics
of the BCR including the effects of a lossy dielectric body
and a conducting shield have been analyzed by using the
moment method [2], [3]. The slotted tube resonator (STR)
is also used especially for the MRI under low static field,
which was proposed by Alderman and Grant [4]. Many efforts
have been made to analyze the STR in order to show the
properties of the probe and to design an optimum structure.
In [5]-[8], the STR has been treated as a two dimensional
model and numerical solutions have been obtained by using the
finite element method. However, because the end rings and the
lumped capacitors can not be included in these analyses, only
the field distribution on a middle transverse plane has been
calculated and the input impedance can not be obtained. On
the other hand, another method called the electric equivalent
circuit method [6], [9], can estimate the input impedance
approximately but it can not show the field distribution and the
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effects of a dielectric body inserted into the STR. Recently,
the moment method and the variational method have been
applied by the present authors to analyze a three dimensional
model of the STR [10], [11]. Numerical results of the current
distribution, the electromagnetic field distribution and the input
impedance have been obtained. These results have shown a
high level of agreement with the measurement. However, the
effects of the dielectric body have not been evaluated.

The purpose of this paper is to analyze the properties of
three dimensional model of the STR loaded by a dielectric
body and surrounded by a conducting shield by using the
variational method. This method offers several advantages
over the previous methods. Because of the stationary property
of the variational expression of the input impedance, accurate
impedance can be obtained. Since the three dimensional model
is more rigorous than the previous two dimensional models,
any components of the electromagnetic field can be calculated
anywhere in the imaging region.

First, the variational expression for the input impedance of
the STR is given. Then, the exact dyadic Green’s function of
a conducting circular waveguide including a lossy dielectric
cylinder, and the expressions of the self and the mutual
impedance between the basis functions, which are used to
expand the unknown surface current on the probe conductor,
are derived. Numerical results such as the input impedance, the
resonance frequency, the field distribution, and the @) value are
obtained to investigate the effects of the shield and the dielec-
tric body. Some numerical results are compared with the ex-
periment results to confirm the validity of the present method.

Although the quadrature operation (radiation and reception
of circularly polarized field) [1] is used in the practical
MRI, the single operation (linear polarization) is analyzed
in this paper. However, the present numerical results such
as the input impedance, the magnetic field distribution, and
the percentage of loss can be used to deduce the properties
of the quadrature operation, because there is no coupling
between two driving points of the STR with the quadrature
operation when the geometry of the body and the shield is
axially symmetric. Furthermore, the analysis of the STR of
the quadrature operation can be performed by extending the
present method.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of the model for the present
analysis which involves the STR, a cylindrical conducting
shield, and a cylindrical dielectric body. The STR is composed
of six parts, i.e., two vertical strips called arms, two outer rings
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Fig. 1. Geometry of the slotted tube resonator loaded by a dielectric cylinder
and surrounded by a conducting shield.

with radius R, called wings, and two inner rings with radius
Ry, called guard-rings. Four chip capacitors C, are attached to
the wings for tuning the resonance frequency. Tefion sheets are
inserted between the guard-rings and the wings. A capacitor
Cyn is connected parallel to the feed point for the sake of the
impedance matching. The shield with radius a, the dielectric
cylinder with radius b, and the STR are placed coaxially.
Both the shield and the dielectric cylinder are assumed to be
infinitely long for the simplicity of the analysis.

It is expected that the input impedance can be obtained with
a high level of accuracy by using the variational method when
a few number of properly selected basis functions are used to
expand the unknown current. In our previous analysis of the
unloaded STR [11], only three basis functions were used but
the accuracy of the results was satisfactory. Therefore, we use
the same basis functions to expand the surface current on the
STR, i.e.,

3
IR) = Y axfi(R), (1
k=1

where oy, (k = 1~ 3) are unknown coefficients and fi(R) is
the basis functions given by

fil= 2, mode 1
Ifa] = cos0.5¢, mode 2 )
Ifs| = |sing|. mode 3.

LT~

mode2

modef mode3

Fig. 2. Three expansion modes of surface current on the slotted tube
resonator.
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Fig. 3. Circularly cylindrical waveguide with a dielectric core.

The direction of each vector is indicated by arrows in Fig. 2.
The surface current density is given by

JR) =I(R)/w(R), 3

where w(R) is the local width of the probe surface perpendic-
ular to the direction of the current. The variational expression
for the input impedance of the STR is expressed as,

1

Zin:r“%

jwu/S/SJ(R).G(R,R')-J(R)ds ds

+

o

{(ia(z—zk)zc+zs>lJ(R)[2}ds , @

k=1

where G(R,R’) denotes the dyadic Green’s function of a
circular cylindrical waveguide having a core of dielectric
cylinder, and its expression is derived in Appendix A. The
region of the integral denoted by S is the probe surface. Z.
is the impedance of the lumped capacitor C;: Z. = 1/jwC,,
and Z, is the surface impedance of the copper [13]. [ is the
distance along the direction of the current and 6(x) is the Dirac
delta function. [ = Iy, I, I3, and 4 indicate the positions of the
four lumped capacitors. In (4), the first integral is the reaction
appearing in the ordinary variational expression of the antenna
problem [14]. The second integral represents the electric power
stored in the lumped capacitors and the loss power due to the
copper loss of the probe conductor.
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Fig. 4. Input impedance when the radius of the shield is 200 mm.

According to the variational theory, the partial differenti-
ation of Zi, with respect to each coefficient a; should be
zero. Assuming ag to be unity, the following equations can
be obtained:

9Zin
da _0’
Q3 =1, (5)
8Ziyn  __ 0
Bag -

By substituting (4) into (5), we get a simultaneous equation
given by

(Zu+4Z)on + Z1a + Zizaz = V22, ©)
Z1300 + Zo3 + Z3saz = 0
We can obtain the values of the unknown coefficients ay (k =
1, 3) numerically. By substituting the current distribution into

(4), we can calculate the input impedance as,

1
Zin = 1 [01212 + Zoz + a3 Zaz + (1 — \/5011)Zc]» O]

where Z;; denotes the self and the mutual impedance between
the three modes defined by

Zij = jwp / / f;(R)- G(R,R') - f;(R")dS'dS
SJS

Zs
+ [ L GRS, ®

Because the above expression includes a double surface
integral over the surface of the STR, an infinite integral with
respect to the wave number h and a infinite summation, the
numerical computation of the Z;; will cost too much CPU
time. Therefore, we have evaluated the double surface integral
in a closed form so that the Z;; is expressed in a form
containing only the single summation and the infinite integral.
Since the analytical integration process is lengthy and the
expressions of Z;; are very complicated, only the expression
of Z33 is given in appendix B. The complete expressions of
self and mutual impedance are available in [16].

Once the surface current on the STR is obtained by solving
(6), the electromagnetic field emitted by the STR can be
evaluated by

E(R) = —juwp /s GR,R)-IR)dS, O

HR) = LV x ER). (10)
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Fig. 5. Resonance frequency versus the radius of the shield.

The electromagnetic field distribution are valid in the entire
region inside the shield except for the close vicinity of the
surface of the STR.

III. NUMERICAL RESULTS AND DISCUSSION

As a numerical example, the characteristics of the STR used
in the imaging of a human head is calculated. The radii of the
wing and the guard-ring are R, = 128 mm and R, = 126
mm, respectively. The height of the slots is H = 230 mm and
the aperture angle is 93° which corresponds to the width of
the arms W, = 195 mm. The width of both the wing and the
guard-ring is W7 = 35 mm. The capacitors C,. and C,,, are 205
pF and 164 pF, respectively. The dielectric properties of the
dielectric body with a radius of 97 mm have been chosen to
approximate the equivalent human head. The electric constant
1s €, = 60 and the conductivity is ¢ = 0.3 S/m. The copper loss
of the STR, the dielectric losses of the tantalum capacitors C,.
and C,, (Q factor = 103) are incorporated in the calculation,
whereas the copper loss of the shielding cylinder is neglected.
The effect of the Teflon sheets between the guard-rings and
the wings is also neglected.

In order to show the validity of the analysis, the input
impedance of the loaded STR inside the cylinder is measured.
The STR is fabricated with copper strips having a thickness
of about 0.5 mm. The configuration of the STR used in the
experiment is the same as that of the theoretical model. Three
circular copper cylinders are used in the experiment as the
shielding cylinder. They are all about 1.5 m long and have
radii of a = 200 mm, 280 mm and 325 mm, respectively. A
1.5 m long phantom with a radius of 97 mm, which is filled
with NaCl solution, has been used as the dielectric body.

The input impedance of the STR is calculated and shown
in Fig. 4, together with the measured data for the case of
a = 200 mm. The agreement between the theory and the
experiment is satisfactory.

Since the STR is used at the resonance frequency which has
to be tuned to the spin frequency of the atomic nucleus to be
imaged, it is important to know the shift of the resonance
frequency that occurs when the radius of the cylinder is
changed and the dielectric cylinder is loaded. The shift of the
resonance frequency as a function of the radius of the cylinder
is shown in Fig. 5, where the resonance frequency is obtained
by searching for the frequency at which the imaginary part of
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Fig. 6. Q factor versus the radius of the shield.
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Fig. 8. Normalized magnetic field distribution along z-axis.

the input impedance becomes zero. A high level of agreement
between the theory and the experiment is obtained to confirm
the validity of the analysis. It is noted that the cylinder with
the radius @ < 2R, will increase the resonance frequency of
the STR significantly while the dielectric cylinder does not
affect the resonance frequency apparently.

The total loss can be estimated by the @ value, which is
evaluated by fo/Af, where f; is the resonance frequency and
Af is the frequency width in which the magnitude of the input
impedance satisfies the condition, |Zin(f)| > |Zin(fo)|/V2.
The theoretical and the experimental results of the @ value
are plotted in Fig. 6. The theoretical results fairly agree with
the measured data. When the radius of the shield decreases,
the @ value without the body decreases whereas the  value
in the presence of the body increases.
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Fig. 9. Distribution of magnitude of the magnetic field on the middle
cross-section for (a) a/R, = 2 and (b) a/ R, = 1. 2, when the input power
is 1 watt.

The power loss of the model can be divided into the
dielectric losses of the body and the capacitors, and the copper
losses of the STR and the shield. In the present analysis, the
copper loss of the shield is neglected. The percentage of each
loss at the resonance frequency is also calculated and shown
in Fig. 7, where the radius of the dielectric body is 85 mm.
It is clear that the loss due to dielectric cylinder is dominant
although its percentage decreases as the radius of the shield
decreases. The second largest loss is that due to the loss of
the capacitor ., and the copper loss and the loss due to the
C,, are very small.

Fig. 8 shows the relative magnitude of component
|Hy|/|Hyo| along the z-axis at the resonance frequency
(21.4 MHz) when the radius of the shield is 256 mm, i.e.,
twice of the radius of the probe, where H,q is the value at the
center of the probe (z = y = 0, z = 150 mm). The theoretical
results and measured data obtained in the case of no dielectric
body are plotted in the same figure for the comparison.
Although the magnetic field distribution in the z-y plane has
been published by using the two dimensional model {5]-[8],
the magnetic field along the z-axis shown in Fig. 8 has so far
not been reported, except for the measurement results [9].

Fig. 9 shows the mapping of magnitudes of the magnetic
field distribution of the STR having the dielectric core in the
cross section of z = W1 + H/2 for the ratio of a/R, = 1.2 and
2, where the input power is 1 watt. The arrow indicates the
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Fig. 10. Sensitivity of the slotted tube resonator versus the radius of the
shield.

direction of the magnetic field. Since the variational expression
of the input impedance has a stationary property, the input
impedance can be obtained accurately. However, the boundary
condition on the probe conductor is not satisfied completely
and the field in the close vicinity of the conductor can not
be obtained accurately. Therefore, the magnetic field in the
close vicinity of the probe conductor is not shown in Fig. 9.
The larger shielding cylinder brings little effects on the field
distribution, and a uniform field distribution similar to that
for the case of free space is observed [10]. While the smaller
shielding cylinder tends to disturb the field and makes the
magnitude weak in the imaging area significantly.

The sensitivity of the probes used for MRI can be defined by
the ratio Hy//P, where Hj is the magnitude of the magnetic
field at the center of the probe and P denotes the total input
power in the probe. The sensitivity of the STR is shown
in Fig. 10 as a function of the ratio a/R,. The dielectric
body decreases the sensitivity greatly because of the dielectric
loss. It is also indicated that the ratio of a/R, is required to
be greater than approximately 2 in order to obtain the high
sensitivity of the STR.

It is concluded from these field calculations (Figs. 8 and 10)
that the strength of the magnetic field decreases greatly in the
presence of the dielectric body. However, the relative magnetic
field is almost the same to the case without the dielectric body.

IV. CONCLUSION

The slotted tube resonator (STR) surrounded by a conduct-
ing circular cylinder and loaded by a dielectric cylinder has
been analyzed by using the variational method and the dyadic
Green’s function of a circular waveguide with a dielectric
core. A method using three surface current modes has been
proposed to expand the surface current on the STR. Although
the probe has a complicated strip structure, the required CPU
time was short and the accuracy of the results was satisfactory.
The validity of present analysis has been confirmed by the
experiment. Because of the presence of the cylindrical shield,
the resonance frequency increases rapidly and the sensitivity
of the STR decreases significantly when the ratio of a/R,
becomes less than approximately two. It has been shown that
the effects of the dielectric cylinder on the resonance frequency
and the relative magnitude distribution of the magnetic field

are very small, but the dielectric body decreases the sensitivity
greatly. Although only the single operation has been treated
in this, paper, the numerical results can be used to deduce the
properties of the practical STR of the quadrature operation.

APPENDIX A

The expression of the dyadic Green’s function of a cylin-
drical waveguide with a cylindrical dielectric core shown in
Fig. 3 is derived in this Appendix. Based on the principle of
superposition, the dyadic Green’s function can be expressed as

= { Go+G.', inregion]
G= sk

PR in region II,

where Go(R,R’) is the Green’s function for the ordinary
cylindrical waveguide, §§1”(R, R’) and éﬁm(n, R') are
scattering components. Go(R, R’) is expressed by [15]

= ' = [T 26
Go(R,R):—;;T;)Lwdh —
{Ann(h)M’nn(—h) + By (RN, (=h),

Moy (h) A, (=) + N (h)Br,,, (=),

where 7 is defined by n = /k2 — h? and ko = w/Higeo is
the wavenumber in free space. é denotes the Kronecher delta
function defined with respect to n as,

n=20

0,
b= {1, n#0
and M,,,;, N,,,, are the well-known cylindrical vector wave

functions that satisfy the vector wave equations in the cylin-
drical coordinate [15], i.e.,

_ COS ..
M, (h) =V x [Jn(n'r) sin P8 z}
_ [q: nJn(nr) sin nh — 8J, (nr) cos ntp@] e
T

r>r
r<r

(A-1)

cos Or sin

1 cos —ihza
Nu(h) = £V x V x [Jn(nr) eIt z]

1 ., OJn(nrycos .
ﬁ%[_ﬂh or sinm‘or

, it
r

( )sinn .
T
n(r) PP

CcOs . s
+ ann(nr)Sinnwz}e ke, (A-3)

where, J,(z) and H,(f) (z) are the Bessel and the Hankel
functions, respectively. They are defined by

i (=1)F z\nt2k
In(@) = kz kl(n + k) (5) ’ (A4
=0
HO(2) = lim 2@ = Tea(@) )

v—n —] sin v

and the derivative of the Bessel function can be obtained by
OJ,(z nJ,(z
@) _ 2D _ gi(@):

Jdz T (A-6)
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In this paper, the Bessel and Hankel functions and their deriva-

tives were performed by using the Bessel-Hankel function

codes provided by the computer center of Tohoku University.
The vector coefficients A, By, are expressed as,

oHP (nr)/or
Ann - Mnn - W Nn1;7 (A'7)
r=qa
H,(f) a
Bnn = Mnn - 7’%Nnn: (A-8)

to satisfy boundary condition on the conducting surface of the
shield (»r = a).

The scattering components égu)(R, R’) an
should have the following forms:

dGV(R,R)

GWRR) = - J Z/
n—O
[[an nn(h) + annn(h)]A;n(_h)
—+ [CnAnn(h) + dann(h)]B:m(_hﬂ ’
(A-9)
GR,R) =
n= 0
[[en ne(h) + fn ne(h)]A’m,(—h)
+ [gnMnE(h) + hnNn{(h)]B/m;(_h)]’
r<r (A-10)
where £ = Vk2 — h? and k is a complex wavenumber defined

by k = koy/1 — jo/wege,. The dielectric constant and the
conductivity of the dielectric cylinder are denoted by ¢, and
o, respectively.

The boundary conditions at the interface of r = b, i.e.,

£ x (G0 + Ggm) —ix GV, r=5
fox(G0+G§.“))=fxvx(}§2”, r=b
(A-11)

enable us to determine the unknown coefficients of a,,, by, cn,
dn, €n, fn, gn and h, appearing in (A-9) and (A-10) by the
following matrix equations:

[D1] = [U]7'va), (A-12)
and
(Do) = [U]7[Ve], (A-13)
where
- OJn(nb) F 15 Jn(nb)
) B
—n?
0 FEJn(nb)
[Vl] = P [VZ] =
k) 8Jn(nb)
iﬁJn(’l]b) p1  Ob
2
-_%Jn(nb) 0
[agn Con
b ds.
[D1] - an 3 [Dz] - ggn 9
Lfe. R,

“Ub)  £XT(0) S F X Ja(eh)
Wl 0 LT(nb) 0 —4-Jn(€D)
T|FXI(p) K1V (h) £ X T (€0) EOE
L T1(nb) 0 — 4 Ju(£b) 0
(A-14)
= (A-15)
b
and II, IL, I and I are defined by
@ )
Jn b) — Hy, Jn(nb
M) = (1) Ha (n)(na) (na)Jn(nb) s 16
: T (na)H® (nb) — HZ' (11a) T (nb
Ti(np) = Jn(1%) ("J), = () In(mb)  p 17y
(na)HD (b) — H® (na)J. (b
I (p) = 22(1%) (nJ)(na) (n2) T (b) A 1)
. / (2)/ _ H,gz)/ J (nb
Tt/ () = Ju(n)Hn (b)) () Ja(mb) s 19y

Jr(na)
respectively. The radius of the shield and dielectric cylinder

are denoted by a and b, respectively. The prime of the Bessel
and the Hankel functions are defined by

0J,(nz)
Oz ’

r=a

OH? (ne)
oz

T (na) = H® (na) =

r=a

(A-20)

APPENDIX B

In this Appendix, the expression of the Z33 is shown as an
example. Since the mode 3 has a distribution of |sin ¢|, as
(8), Z33 can be derived as,

Z33 :jwu/ / [sinp|é - GR,R’) - @|sin¢’|dS dS
sJs
+/ ésin2 wdS
W, W,
—4jqub/ / dcp/ dz/ dy’

2Zs b

x sin pG (R, R')sing’ + —=—>— W

_ wuR} /°° gn2 =%
T 2orW? n;) oo 72
x [(aor’l’(nm) T (nR))IT (nRy)

~ (beH(an)H’(an) ~ coH’(an)H(an)) jhn

sin? pdyp
0

Ry Ry k1

+ (deTI(1Rs) + Jn(nB)TI(nR:) 75 Rz}f (W) I(=h)

ZsRyw
—_ B-1
+ w, (B-1)
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where,
14} T .
I(h) = / dz/ sinnepsin pe 7P dyp
0 0
e =) =1 L
0 (n#1).
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