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PAPER

Analysis of Large-Scale Periodic Array Antennas by CG-FFT
Combined with Equivalent Sub-Array Preconditioner

Huiqing ZHAI†, Nonmember, Qiang CHEN†a), Qiaowei YUAN††, Members, Kunio SAWAYA†, Fellow,
and Changhong LIANG†††, Nonmember

SUMMARY This paper presents method that offers the fast and accu-
rate analysis of large-scale periodic array antennas by conjugate-gradient
fast Fourier transform (CG-FFT) combined with an equivalent sub-array
preconditioner. Method of moments (MoM) is used to discretize the elec-
tric field integral equation (EFIE) and form the impedance matrix equation.
By properly dividing a large array into equivalent sub-blocks level by level,
the impedance matrix becomes a structure of Three-level Block Toeplitz
Matrices. The Three-level Block Toeplitz Matrices are further transformed
to Circulant Matrix, whose multiplication with a vector can be rapidly im-
plemented by one-dimension (1-D) fast Fourier transform (FFT). Thus, the
conjugate-gradient fast Fourier transform (CG-FFT) is successfully applied
to the analysis of a large-scale periodic dipole array by speeding up the
matrix-vector multiplication in the iterative solver. Furthermore, an equiv-
alent sub-array preconditioner is proposed to combine with the CG-FFT
analysis to reduce iterative steps and the whole CPU-time of the iteration.
Some numerical results are given to illustrate the high efficiency and accu-
racy of the present method.
key words: large-scale periodic phased arrays, method of moments
(MoM), block Toeplitz matrices, conjugate-gradient fast Fourier transform
(CG-FFT), preconditioner of iterative method

1. Introduction

An urgent requirement is to obtain a fast and accurate analy-
sis of the electromagnetic performance of a large-scale array
antenna which is used in the solar power satellite (SPS) sys-
tems [1]. The method of moments (MoM) is one of the ef-
fective methods to analyze antennas [2]. However, the com-
putational complexity of the conventional direct methods
and iterative methods require order of O(N2) up to O(N3)
[3], [4] and O(N2) of computer memory to solve the dense
matrix equation appearing in the MoM analysis, where N is
the number of unknowns. Even though powerful computers
with large memories are available, it is still very difficult to
accurately analyze an extremely large-scale electromagnetic
problem with millions of unknowns.

Many efforts have been made to accelerate the MoM
computation by simplifying the computational complexity
of a matrix-vector multiplication, and reducing the mem-
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ory requirements in the conjugate gradient (CG) iterative
solver [5], [6]. The fast multipole method (FMM) [7], [8]
and multilevel fast multipole algorithm (MLFMA) [9] have
been proved to be effective in reducing the computational
complexity for arbitrarily shaped surface problems. With
the use of MLFMA, the computational complexity of a
matrix-vector multiplication has been reduced from O(N2)
to CN log(N), but the mutual impedance calculated in the
MLFMA causes some errors inevitably due to the trunca-
tion error from the finite series of the Green’s function for
far field calculation. Furthermore, when the considered ob-
ject has a very large size, MLFMA is still time consuming
due to the constant C is usually very large [10]. Recently,
the adaptive integral method (AIM) has also received much
attention for the ability of reducing computational complex-
ity through fast far-zone’s matrix-vector multiplication by
fast Fourier transform (FFT) [11]. Though its computational
complexity can be reduced to O(N1.5 log N) or less, large
error may be inevitably introduced in the process of non-
uniform grids’ transform to uniform grids. Conjugate gradi-
ent fast Fourier transform (CG-FFT) algorithm [12], [13] is
also very effective to reduce the computational complexity
to C0N log N with a relatively small constant C0 compared
with that of MLFMA. In recent years, some researches have
been carried out on the effective analysis of periodic struc-
tures, and some effective methods for the practical electro-
magnetic problems have been proposed in [10], [14], [15].

Many other fast algorithms have also been developed
for the analysis models with periodic structure. The itera-
tive method based on the Gauss-Seidel scheme has been pro-
posed to give a fast analysis of the large-scale array anten-
nas [16]. An iterative method based on space decomposition
technique [17] has also been employed to give a fast analysis
of the large-scale phased array antennas. Though the itera-
tive steps have been effectively reduced in these two meth-
ods, the computational complexity is still near to O(N2).
The Forward-backward method (FBM) and its some exten-
sions have been developed for the fast analysis of electro-
magnetic problems, with computational complexity of near
to O(N), but it has also a problem in accuracy because of
the error caused in filling the impedance matrix [18], [19].
Therefore, how to obtain a fast and accurate analysis of
large-scale periodic array antennas is still an interesting and
challenging object.

In this paper, a fast and accurate analysis for a large-
scale periodic array antenna is presented. Firstly, the MoM
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is used to discretize the electric field integral equation and
form impedance matrix equation. Then by properly dividing
a large array into equivalent sub-blocks level by level, the
impedance matrix becomes a structure of Three-level Block
Toeplitz Matrices. The Three-level Block Toeplitz Matrices
are further transformed to a form of Circulant Matrix, whose
multiplication with a vector can be fast implemented by 1-D
FFT. Numerical analysis shows that the computational com-
plexity for each iterative step of the presented analysis can
be reduced to O(N log(N)) and computer memory require-
ment can be reduced to O(N), where N represents the whole
number of unknowns. Thus the whole CPU-time of the
present method is the order of AN + BN log(N). As a result,
the conjugate-gradient fast Fourier transform (CG-FFT) is
successfully applied to the analysis for large-scale periodic
dipole array by speeding up the matrix-vector multiplication
in the iterative solver. Because there is no approximation
involved in filling the impedance matrix, a high accuracy is
ensured in the present method.

Though the computational complexity (or CPU-time)
of each iterative step has been greatly reduced, it is also im-
portant to improve the iterative convergence to effectively
reduce the whole iterative steps. Based on the characteris-
tics of the periodic structure of the analysis model, an equiv-
alent sub-array preconditioner is proposed to enhance con-
vergence of the CG-FFT analysis in order to reduce required
iterative steps and the whole CPU-time. Finally some large-
scale periodic dipole arrays are calculated to illustrate the
high efficiency and accuracy of the present method.

2. Formulation

The analysis model of two-dimensional (2-D) periodic array
antennas including Ntotal = NxNy dipoles, is shown in Fig. 1.
The length of each dipole is 2l. The array spacing along x
and y directions are dx and dy, respectively.

2.1 MoM Analysis

The electric field integral equation (EFIE) for all line electric
currents Jn(y) (n=1, 2, · · ·, Ntotal) can be written as

t̂ ·
iωµ0

Ntotal∑
n=1

∫
Ln

G(r, y) · Jn(y)dy

 = −t̂ · E(r), (1)

Fig. 1 Analysis model of periodic array antenna.

where t̂ is unit tangential vector of the line antenna, Jn(y)
is the line electric currents, E(r)is the exciting electric field.
G(r, y) denotes electric field dyadic Green’s function in free
space [20]. The current distribution Jn(y) on the nth line
antenna is expanded as

Jn(y) =
M∑

i=1

Iifi(y), (2)

where Ii is corresponding expansion coefficient and the ba-
sis function fi is chosen as sinusoidal basis functions [21],
which is given by

fi(y) =



sin k(y − yn−1)
sin k(yn − yn−1)

yn−1 ≤ y ≤ yn

sin k(yn+1 − y)
sin k(yn+1 − yn)

yn ≤ y ≤ yn+1

0 elsewhere

. (3)

The following impedance matrix equation is obtained
by using Galerkin’s procedure

ZI = V. (4)

2.2 Application of CG-FFT to Periodic Array Antennas

Firstly, the array antenna is divided into several sub-blocks.
If Nx dipoles along x axis are assumed to be one sub-block,
the array is composed of Ny equivalent sub-blocks. Thus
Z matrix in (4) can be described as the following Block
Toeplitz Matrices [4], [22], [23]

Z =



T0 T−1 · · · T1−Ny

T1 T0 · · · T2−Ny

...
...

. . .
...

TNy−1 TNy−2 · · · T0


. (5)

Secondly, each sub-block T is further divided into Nx

smaller sub-blocks, each containing one dipole antenna.
Thus the T matrix in (5) will be written as the following
another Block Toeplitz Matrices

T =



TT0 TT−1 · · · TT1−Nx

TT1 TT0 · · · TT2−Nx

...
...

. . .
...

TTNx−1 TTNx−2 · · · TT0


. (6)

Finally, because each dipole is divided into M basis
functions (2), TT matrix can also be Toeplitz Matrix

TT =



ttt0 ttt−1 · · · ttt1−M

ttt1 ttt0 · · · ttt2−M
...

...
. . .

...
tttM−1 tttM−2 · · · ttt0


. (7)

Therefore the Three-level Block Toeplitz Matrices is formed
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by making use of array geometry and division of the basis
function.

In order to implement fast matrix-vector multiplication
for solving (4) in iterative solver, CG-FFT is employed. It is
necessary to transform the Three-level Block Toeplitz Ma-
trices to a Circulant Matrix. For the lowest level matrix TT ,
the following Circulant Matrix can be constructed as

K2M =

[
TT BB
BB TT

]
, (8)

where the matrix BB can be written as

BB =



0 tttM−1 · · · ttt1
ttt1−M 0 · · · ttt2
...

...
. . .

...
ttt−1 ttt−2 · · · 0


. (9)

According to three same implementations of transform from
the Toeplitz Matrix to the Circulant Matrix, the whole Cir-
culant Matrix C can be attained by

C =



c0 c8Ny∗Nx∗M−1 · · · c1

c1 c0 · · · c2
...

...
. . .

...
c8Ny∗Nx∗M−1 c8Ny∗Nx∗M−2 · · · c0


. (10)

Through deducing, the whole factorization of C has the form
of

C = (F̂
2Nx·2Ny

2M )H · P1 · (F̂2Ny·2M
2Nx

)H

· P2 · (F̂2Nx·2M
2Ny

)H · diag(F̂2Nx·2M
2Ny

d)

· F̂2Nx·2M
2Ny

· P2 · F̂2Ny·2M
2Nx

· P1 · F̂2Nx·2Ny

2M , (11)

where

F̂ j
i =



Fi

Fi

. . .

Fi


, (12)

where Fi is the 1-D fast Fourier transform for i elements and
(Fi)

H is the 1-D inverse fast Fourier transform for i elements.
The whole vector is divided into j groups uniformly, and
each group includes i elements. Suppose permutation matrix
PP(m, n), and it has the following property.

PP(m, n)



A1

A2
...

Am


=



B1

B2
...

Bn


, (13)

where Aα = [aα,1, aα,2, · · · , aα,n]T and Bβ = [a1,β, a2,β, · · · ,
am,β]T . For example, when m = 3, n = 2, PP(m, n) will be
the following permutation matrix

PP(3, 2)

=




1 0
0 0
0 0




0 0
1 0
0 0




0 0
0 0
1 0


0 1
0 0
0 0




0 0
0 1
0 0




0 0
0 0
0 1




. (14)

So the general form of permutation matrix P1 in (11) can be
expressed by

P1 =

k1︷���������������������������������������︸︸���������������������������������������︷
PP(m1, n1)

. . .

PP(m1, n1)

, (15)

and the general form of permutation matrix P2 in (11) can
be directly denoted by

P2 = PP(m2, n2), (16)

where these parameters k1 = 2Ny,m1 = 2Nx, n1 = 2M and
m2 = 2Ny, n2 = 2Nx · 2M are for 1-D fast Fourier trans-
form procedure in (11); k1 = 2Ny,m1 = 2M, n1 = 2Nx and
m2 = 2Nx · 2M, n2 = 2Ny are for 1-D inverse fast Fourier
transform procedure in (11). If the first column vector in
(10) is denoted by vector C1, then the vector d2 can be de-
scribed by

d2 = P1



F2Mv0

F2Mv1
...

F2Mv4Ny∗Nx−1


, (17)

where vi = [ci∗2M+0, ci∗2M+1, · · · , ci∗2M+(2M−1)]T , C1 =

[c0, c1, · · · , c8Ny∗Nx∗M−1]T , k1 = 2Ny,m1 = 2Nx, n1 = 2M
for permutation matrix P1. Thus vector d1 can be written by

d1 = P2



F2Nxω0

F2Nxω1
...

F2Nxω4Ny∗M−1


, (18)

where ωi = [ψi∗2Nx+0, ψi∗2Nx+1, · · · , ψi∗2Nx+(2Nx−1)]T , d2 =

[ψ0, ψ1, · · · , ψ8Ny∗Nx∗M−1]T , m2 = 2Ny, n2 = 2Nx · 2M for
permutation matrix P2. ψi is the ith element of the vector
which has be denoted in Eq. (17). Therefore vector d in (11)
can be expressed by

d =



F2Ny
ξ0

F2Ny
ξ1

...
F2Ny

ξ4Nx∗M−1


, (19)

where ξi = [γi∗2Ny+0, γi∗2Ny+1, · · · , γi∗2Ny+(2Ny−1)]T , d1 =

[γ0, γ1, · · · , γ8Ny∗Nx∗M−1]T . Suppose current vector I in (4)
is represented by

I =



I(1)
1

I(1)
2
...

I(1)
Ny


, (20)
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where, I(1)
i = [I(2)

i,1 , I
(2)
i,2 , · · · , I(2)

i,Nx
]T , and

I(2)
i, j = [κi, j,1, κi, j,2, · · · , κi, j,M]T . Therefore, ZI in (4) can be

easily calculated by multiplying C with I′, where vector I′
is expressed by

I′ = [J′, 0]T , (21)

where, J′ = [J′(1)
1 , J′(1)

2 , · · · , J′(1)
Ny

]T , and J′(1)
i = [J(1)

i , 0]T ,

and J(1)
i = [J′(2)

i,1 , J′(2)
i,2 , · · · , J′(2)

i,Nx
]T , J′(2)

i, j = [J(2)
i, j , 0]T , and

J(2)
i, j = [κi, j,1, κi, j,2, · · · , κi, j,M]T .

From the following numerical examples, it is shown
that the computational complexity of the present method can
be reduced to O(N log(N)). Because only the first row ma-
trix elements is required to be stored to implement the fast
matrix-vector multiplication, the memory requirement can
be reduced to O(N). Here N represents the whole number of
unknowns, i.e. N = NxNyM. It is also should be noted that
since there is no approximation introduced in the present
method, high accuracy is expected to be achieved.

2.3 An Equivalent Sub-Array Preconditioner

The CG-FFT is very effective in reducing the computa-
tional complexity of each iterative step. However, the whole
CPU-time is proportional to the number of iterative steps to
achieve desired accuracy. And the whole CPU-time is esti-
mated by NiterC0N log(N), where Niter is the whole iterative
steps and C0 is a constant. In the application of CG-FFT
to large-scale periodic array antennas, the number of itera-
tive steps Niter is often a very large number. Therefore, it
is also very practical and important to reduce the number of
iterative steps.

The preconditioning technique is a very direct method
to reduce the number of iterative steps [15], [24]–[26]. To
make use of the preconditioning technique, it is required to
find a preconditioner matrix P so that the number of the iter-
ative number of the iterative steps required for obtaining the
solution PZI = PV is reduced compared with that required
for the original matrix equation ZI = V .

Let P be a N × N preconditioner matrix. Considering
the characteristic of the periodic structure of the periodic
structure of the analysis model, an equivalent sub-array pre-
conditioner matrix P is determined in the following.

For an example of a Nx × Ny = 9 × 4 array in Fig. 2, an
equivalent sub-array can be nx × ny = 3 × 1 as a choice.

The whole preconditioning matrix P can be formed by

P =



S r 0 0 · · · 0
0 S r 0 · · · 0

0 0
. . .

. . .
...

...
...

. . . S r 0
0 0 · · · 0 S r


, (22)

where S r is given by

S r = Z−1
s , (23)

Fig. 2 An equivalent (or similar) sub-array preconditioner.

where Zs denotes the self-impedance matrix of selected sub-
array. Because the sub-array block is usually much smaller
than the total array, i.e. unknown r is a small integer com-
pared with N. The LU decomposition (LUD) can be used to
compute the S r.

Since all sub-arrays are equivalent and small, the im-
plementation of the present preconditioner costs little extra
memory and CPU time in each matrix-vector multiply. The
high efficiency of introducing the precondtioner is demon-
strated in the following examples.

3. Numerical Results and Discussions

In the first example, a λ/2 -dipole array (2l = λ/2, Nx×Ny =

32 × 32) with array spacing of dx = 0.5λ, dy = λ is an-
alyzed by the present method to demonstrate the accuracy.
The phase difference of the exciting voltage to the array ele-
ments is jkdx sin θ0 between the neighboring elements along
x direction, while it has the same phase in y direction so that
the radiation of the array is directed to θ0 in xz plane. In
this example, θ0 equals 300. Each dipole is expanded by 9
overlapped sinusoidal functions expressed in (3). The dipole
number of the equivalent sub-array preconditioner is 8, the
number of dipoles along x and y direction is 8 and 1 respec-
tively, so the unknown r in sub-array is 72. The residual
error is defined as

∏
L = ‖ZI − V‖/‖V‖. The residual er-

ror is 10−8 in following cases, which means that the iterative
procedure continues until the residual error is less than 10−8.

Figure 3 gives the comparisons of input impedances
of 1st row dipoles along x axis between the results us-
ing the LU decomposition method (LUD) and using the
present method. The corresponding actual gain with load
impedance Zload = 50Ω is also shown in Fig. 4. The excel-
lent agreements between two methods are achieved.

In order to show the performance of the present method
in dealing with large-scale problems, the array dimension is
changed from 16 × 16 to 256 × 256 corresponding to the
number of unknowns (N) from 2,304 to 589,824. The di-
mension of sub-array preconditioner is 8 × 1 (unknowns are
72) in all cases. The memory requirements and CPU time
per iteration are plotted as function of the number of un-
knowns in Fig. 5. The CPU time per iteration with precondi-
tioner and that without preconditioner are nearly same from
Fig. 5. The value of CPU-time shown was measured by us-
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Fig. 3 Input impedance of 1st row (Rowy = 1).

Fig. 4 Actual gain of xz plane.

Fig. 5 Computational complexity and memory requirement.

ing a Pentium-IV 2.6 GHz PC with 1.5G Byte of memory.
Both CPU times per iteration are close to 2 × 10−5N log(N)
sec and memory requirement is close to 1.1 × 10−3N MB.

The convergence comparison of without precondi-
tioner and with present preconditioner is shown in Fig. 6.
The array has a dimension of Nx × Ny = 64 × 64. The high
efficiency of the present preconditioner is demonstrated.

Figure 7 gives the convergence of the P-CG-FFT by in-
creasing the unknowns N. The iterative steps increase with
the increase of the unknowns in both methods, but the intro-

Fig. 6 Convergence comparison of two methods.

Fig. 7 Comparison of iterative steps with unknowns.

Fig. 8 Comparison of iterative steps with dx/λ.

duction of the present preconditioner achieves a great reduce
of the iterative steps. Figure 8 gives the performance of iter-
ative steps with the dx/λ using two methods. It is clear that
iterative steps increase when the dipoles’ couplings become
stronger in both methods, but the present preconditioner re-
duces iterative steps greatly.

Finally, a large-scale periodic array antenna with Nx ×
Ny = 256 × 256 dipoles is analyzed. The number of un-
knowns reaches up to 589,824. The input impedances of 1st
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Fig. 9 Input impedance of 1st row (Rowy = 1).

Fig. 10 Actual gain of xz plane.

row dipoles along x direction in the case of Ny = 1 is given
in Fig. 9, and the actual gain (Zload = 50Ω) radiation pattern
of dipole array calculated by P-CG-FFT is shown in Fig. 10,
where the CPU time is only 6694 seconds with the residual
error of 10−8.

4. Conclusions

In this paper, we propose a fast and accurate analysis of
large-scale periodic array antennas by CG-FFT combined
with a high effective sub-array preconditioner. Three-level
Block Toeplitz Matrices and corresponding Circulant Ma-
trix are obtained according to the equivalent sub-block di-
visions. Conjugate-gradient fast Fourier transform (CG-
FFT) has been successfully employed for the analysis of a
large-scale dipole array to reduce the computational com-
plexity and computer memory requirement to O(N log(N))
and O(N) respectively. Because all required impedance ma-
trix elements are calculated without approximation, both the
near field and far field can be achieved accurately. Fur-
thermore, an equivalent sub-array preconditioner has been
proposed to combine with the CG-FFT analysis to effec-
tively reduce the iterative steps and the whole CPU-time.
It should be noted that the algorithm of the CG-FFT with
the preconditioner is easily parallelized on a parallel com-

puting system. An extremely large scale problem with more
than millions of unknowns is expected to be solved by the
parallelized algorithm at the next stage.

Acknowledgement

This research is partly supported by the Japan Aerospace
Exploration Agency (JAXA).

References

[1] D. Kim, Q. Chen, and K. Sawaya, “Numerical analysis of broad-
band phased of log-periodic dipole array antenna elements,” Proc.
2001 IEEE International Antennas and Propagation Symposium and
USNC/URSI National Radio Science Meeting, vol.3, pp.824–827,
2001.

[2] R.F. Harrington, Field computation by moment method, IEEE Press,
New York, 1993.

[3] R. Mittra, Numerical and Asymptotic Techniques for Electromag-
netics, Springer-Verlag, 1975.

[4] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, sec-
ond ed., John Wiley, 1998.

[5] T.K. Sarkar and S.M. Rao, “The application of the conjugate gradi-
ent method for the solution of electromagnetic scattering from ar-
bitrarily oriented wire antennas,” IEEE Trans. Antennas Propag.,
vol.32, no.4, pp.398–403, April 1984.

[6] T.K. Sarkar, “The conjugate gradient method as applied to elec-
tromagnetic field problems,” IEEE Antennas Propagation Society
Newsletter, vol.28, no.4, pp.4–14, Aug. 1986.

[7] V. Rokhlin, “Rapid solution of integral equations of scattering theory
in two dimension,” J. Comput. Phys., vol.86, no.2, pp.414–439, Feb.
1990.

[8] N. Engheta, W.D. Murphy, V. Rokhlin, and M.S. Vassiliou, “The
fast multipole method (FMM) for electromagnetic scattering prob-
lems,” IEEE Trans. Antennas Propag., vol.40, no.6, pp.634–641,
June 1992.

[9] J.M. Song and W.C. Chew, “Multilevel fast-mutipole algorithm for
solving combined field integral equations of electromagnetic scat-
tering,” Microw. Opt. Technol. Lett., vol.10, no.1, pp.14–19, Sept.
1995.

[10] W.B. Lu, T.J. Cui, X.X. Yin, Z.G. Qian, and W. Hong, “Fast
algorithms for large-scale periodic structures using subentire do-
main basis functions,” IEEE Trans. Antennas Propag., vol.53, no.3,
pp.1154–1162, March 2005.

[11] W.-j. Zhao, L.-w. Li, and Y.-B. Gan, “Efficient analysis of antenna
radiation in the presence of airborne dielectric radomes of arbitrary
shape,” IEEE Trans. Antennas Propag., vol.53, no.1, pp.442–449,
Jan. 2005.

[12] T.K. Sarkar, E. Arvas, and S.M. Rao, “Application of FFT and the
conjugate gradient method for the solution of electromagnetic ra-
diation from electrically large and small conducting bodies,” IEEE
Trans. Antennas Propag., vol.34, no.5, pp.635–640, May 1986.

[13] M.F. Catedra, R.P. Torres, J. Basterrechea, and E. Gago, The CG-
FFT Method Application of Signal Processing Techniques to Elec-
tromagnetics, Artech House, Boston, 1995.

[14] M. Zhang, T.S. Yeo, L.W. Li, and M.S. Leong, “Electromagnetic
scattering of large finite arrays of patch antennas,” IEEE AP-S Di-
gest, vol.2, pp.204–207, June 2002.

[15] E.H. Bleszynski, M.K. Bleszynski, and T. Jaroszewicz, “Block-
Toeplitz fast integral equation solver for large finite periodic and
partially periodic array systems,” IEICE Trans. Electron., vol.E87-
C, no.9, pp.1586–1594, Sept. 2004.

[16] Q. Chen, Q. Yuan, and K. Sawaya, “Fast algorithm for solving ma-
trix equation in MoM analysis of large-scale array antennas,” IEICE
Trans. Commun., vol.E85-B, no.11, pp.2482–2488, Nov. 2002.



928
IEICE TRANS. COMMUN., VOL.E89–B, NO.3 MARCH 2006

[17] K.Y. Sze, K.F. Sabet, T. Ozdemir, and D. Chun, “A PNM imple-
mentation for large phased arrays,” 2002 Symp. on Antenna Tech-
nology and Applied Electromagnetics (ANTEM 2002), pp.514–517,
Montr., Canada, July/Aug. 2002.

[18] O.A. Civi, “Extension of forward-backward method with a
DFT-based acceleration algorithm for efficient analysis of radia-
tion/scattering from large finite-printed dipole arrays,” Microw. Opt.
Technol. Lett., vol.37, no.1, pp.20–26, April 2003.

[19] H.-T. Chou and H.-K. Ho, “Implementation of a forward-back pro-
cedure for the fast analysis of electromagnetic radiation/scattering
from two-dimension large phased arrays,” IEEE Trans. Antennas
Propag., vol.52, no.2, pp.388–395, Feb. 2004.

[20] C.T. Tai, Dyadic Green Function in Electromagnetic Theory, IEEE,
New York, 1994.

[21] J.H. Richmond and N.H. Greay, “Mutual impedance of nonplanar-
skew sinusoidal dipoles,” IEEE Trans. Antennas Propag., vol.23,
no.5, pp.412–414, May 1975.

[22] V.I. Ivakhnenko and E.E. Tyrtyshnikov, “Block-Toeplitz-structur-
based solution strategies for CEM problems,” 11th Annu Rev Progr
in Appl Comput Electromag, vol.1, pp.181–188, 1995.

[23] E. Lundstrom, Singular Value Computations for Toeplitz Matrices
and Subspace Tracking, Ph.D. Thesis, Linkoping University, Swe-
den, Nov. 1996.

[24] Y. Zhuang, A. Pierce, and J. Litva, “Spectral preconditioned CG-
FFT method in electromagnetics analysis,” IEEE AP-S Digest, vol.3,
pp.2174–2177, June 1994.

[25] J. Liu and J.M. Jin, “A highly effective preconditioner for solving the
finite element-boundary integralmatrix equation of 3-D scattering,”
IEEE Trans. Antennas Propag., vol.50, no.9, pp.1212–1221, Sept.
2002.

[26] J. von Hagen and W. Wiesbeck, “Physics-based preconditioner
for iterative algorithms in MoM-problems,” IEEE Trans. Antennas
Propag., vol.50, no.9, pp.1315–1316, Sept. 2002.

Huiqing Zhai received the B.E., M.E. and
Ph.D. degrees in electrical engineering from Xi-
dian University, Xi’an, China, in 2000, 2003
and 2004, respectively. In December 2004, he
joined in the School of Electric Engineering,
Xidian University, where he is a lecturer now.
He is currently a Postdoctoral Researcher with
Department of Electrical Communications, To-
hoku University, Japan. His primary research
interests include computational electromagnet-
ics, hybrid algorithms, electromagnetic compat-

ibility and various antennas for mobile communications.

Qiang Chen received the B.E. degree from
Xidian University, Xi’an, China, in 1986, the
M.E. and D.E. degrees from Tohoku University,
Sendai, Japan, in 1991 and 1994, respectively.
He is currently an Associate Professor with the
Department of Electrical Communications, To-
hoku University. His primary research interests
include computational electromagnetics, adap-
tive array antennas, and antenna measurement.
Dr. Chen received the Young Scientists Award
in 1993 from the Institute of Electronics, Infor-

mation and Communication Engineers (IEICE) of Japan. Dr. Chen is a
member of the IEEE and the Institute of Television Engineers of Japan.
He has served as the Secretary and Treasurer of IEEE Antennas and Prop-
agation Society Japan Chapter in 1998. He is currently the Secretary of
Technical Committee on Electromagnetic Compatibility of IEICE.

Qiaowei Yuan received the B.E., M.E. and
Ph.D. degrees from Xidian University, Xi’an,
China, in 1986, 1989 and 1997 respectively.
From 1990 to 1991, she was a special research
student in Tohoku University, Japan. She was
a researcher in Matsushita Communication Sen-
dai R & D Labs. Co., Ltd. from 1992 to 1995,
and in Sendai R & D Center, Oi Electric Co.,
Ltd. from 1997 to 2002. She is currently with
Intelligent Cosmos Research Institute, involved
in the research and development of antennas and

RF circuits for mobile communications.

Kunio Sawaya received the B.E., M.E.
and D.E. degrees from Tohoku University, Sen-
dai, Japan, in 1971, 1973 and 1976, respectively.
He is presently a Professor in the Department
of Electrical and Communication Engineering
at the Tohoku University. His areas of inter-
ests are antennas in plasma, antennas for mo-
bile communications, theory of scattering and
diffraction, antennas for plasma heating, and ar-
ray antennas. He received the Young Scientists
Award in 1981 and the Paper Award in 1988

both from the Institute of Electronics, Information and Communication En-
gineers (IEICE) of Japan. He served as the Chairman of Technical Group
of Antennas and Propagation of the IEICE from 2001 to 2003. Dr. Sawaya
is a senior member of the IEEE, and a member of the Institute of Image
Information and Television Engineers of Japan.

Changhong Liang received the B.E. degree
from Xidian University (Formerly Northwest
Telecommunications Institute), Xi’an, China, in
1965, and continued his graduate studies un-
til 1967. From 1980 to 1982, he worked at
Syracuse University, New York, as a Visiting
Scholar. Since 1986, he has been a Professor
and Ph.D. student advisor in the School of Elec-
tronic Engineering, Xidian University, where he
is also a Director of the Academic Committee
of National Key Lab of Antenna and Microwave

Technology. He has wide research interests, which include computational
microwave and computational electromagnetics, microwave network the-
ory, lossy variational electromagnetics, electromagnetic inverse scattering,
electromagnetic compatibility. Prof. Liang is a Fellow of the Chinese In-
stitute of Electronics (CIE), and has received the titles of “National Distin-
guished Contribution,” “National Excellent Teacher,” etc.


