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Circuit Modeling of Near-Field Coupled Undersea
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Abstract— This study addresses circuit modeling of near-field
coupled antennas that are separately enclosed in lossless
dielectrics and immersed in seawater, which are intended for
applications such as undersea wireless power transfer (WPT)
systems. To accomplish this, a circuit modeling technique called
the impedance expansion method (IEM) is extended to consider
lossy dielectrics with a loss tangent greater than unity. Unlike
the conventional IEM, the extended method first expands the
coefficient matrices derived by the method of moments (MoM)
into the Laurent series with respect to propagation constants and
then further expands them with respect to the complex angular
frequency. Based on this feature, the extended method is called
the impedance double expansion method (IDEM). By applying
the IDEM to the undersea dipole and loop antennas with pure
water covers, their circuit models are obtained. Comparison with
the full-wave MoM and finite-difference time-domain (FDTD) cal-
culations shows that these circuit models reasonably approximate
not only the reflection and transmission coefficients between the
antennas with matching circuits (MCs) but also the radiation
loss.

Index Terms— Dielectric losses, equivalent circuits, method of
moments (MoM), wireless power transmission.

I. INTRODUCTION

THE IEEE Standard for Definitions of Terms for Anten-
nas [1] states the following.
The term antenna is sometimes used for electromag-
netic devices that couple over distances less than that
associated with radiated fields.

This article refers to antennas in the above sense as “near-
field coupled antennas.” Near-field coupled antennas are often
used in wireless power transfer (WPT) systems [2], [3], [4],
[5]. This trend is more pronounced in undersea WPT systems
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because the attenuation of electromagnetic waves in seawater
is significant and far-field power transmission is impractical.

Various theoretical analyses have been conducted to under-
stand the operating principle of undersea antennas. For
example, the input admittance of a dipole antenna and input
impedance of a loop antenna in a lossy dielectric were derived
in the form of power series with respect to the phase constant,
and these results are quite thought-provoking [6], [7].

To prevent corrosion and suppress losses due to seawater,
it is common to enclose the antenna conductors in low-loss
dielectrics [8]. Theoretical analyses of such antennas have
also been performed. For example, the input impedance of
a dipole antenna in a lossy dielectric covered by a low-loss
dielectric was obtained using the transmission line theory [9].
In addition, the input impedance of a loop antenna enclosed
in a spherical low-loss dielectric was obtained by applying the
quasistatic approximation within the sphere [10]. Furthermore,
the circuit model and input impedance of a dipole antenna
partially covered by a low-loss dielectric were obtained by
approximating the parts exposed to seawater as spheroids and
then performing a scalar potential analysis [11]. However, the
aforementioned theoretical analyses can only be applied to a
limited number of objects.

In WPT applications, the circuit modeling of antennas
is more important because it enables a unified design of
antennas and electronic circuits. For example, in electrically
coupled WPT systems, the well-known formula for the con-
ductances of parallel-plate electrodes is often used [12], [13].
However, this approach has limitations in dealing with the
presence of low-loss dielectrics and electrodes with arbitrary
shapes. On the other hand, to determine the self- and mutual
inductances of coils in magnetically coupled WPT systems,
Neumann’s formula is commonly used [14], [15]. However,
the physical basis for applying this method to cases where sea-
water and low-loss dielectric coexist is unclear. Furthermore,
there is no established method for expressing losses caused by
eddy currents in seawater using circuit models. For example,
an interesting circuit model in which the coil current and eddy
currents in seawater are inductively coupled has been reported
to represent the frequency dependence of the losses caused
by eddy currents [16]. However, how to determine its circuit
parameters is unclear.

Therefore, a generic circuit modeling method that can be
applied to both electrically and magnetically coupled undersea

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4146-5464
https://orcid.org/0000-0002-1517-5909
https://orcid.org/0000-0001-9543-2321


HAGA et al.: CIRCUIT MODELING OF NEAR-FIELD COUPLED UNDERSEA ANTENNAS USING IDEM 9379

antennas involving low-loss dielectrics with arbitrary shapes
is required. One candidate for this purpose is the impedance
expansion method (IEM) [17], which is a circuit modeling
technique based on the Laurent series expansion of impedance
matrices derived by the method of moments (MoM) [18].
So far, the IEM has undergone several extensions and has been
applied to circuit modeling of WPT systems in free space [19]
and those involving perfectly conducting scatterers [20] and
lossless dielectric/magnetic bodies [21]. In this study, the IEM
is further extended to consider lossy dielectrics with loss
tangents greater than unity, including not only seawater but
also biological tissues. Low-loss dielectrics with a loss tangent
less than unity are beyond the scope of this article and are
left for future studies. The conventional IEM directly expands
the coefficient matrices with respect to the complex angular
frequency, whereas the extended method first expands the
coefficient matrices with respect to the propagation constant
and then further expands them with respect to the complex
angular frequency. Based on this feature, the extended method
is hereafter called the impedance double expansion method
(IDEM). The IDEM is applied to near-field coupled undersea
dipole and loop antennas enclosed in pure water covers,
wherein the effects of the covers on circuit parameters are
clarified.

In the circuit models produced by the conventional
IEM, the unknowns are limited to the currents of antennas,
whereas the effects of adjacent scatterers are represented as
changes in the circuit parameters. This property inherited
by the IDEM is an advantage over other circuit model-
ing techniques such as the partial-element equivalent-circuit
method [22], [23]. In addition, the circuit models produced by
the IDEM have an advantage in that the internal impedances of
antenna conductors, static resistances due to lossy dielectrics,
impedance components representing eddy current, and radia-
tion losses are decomposed, allowing them to be separately
evaluated.

This section concludes with a discussion of the applicability
of the IDEM to other applications. Wireless charging of
pacemakers is technically similar to undersea WPT systems,
and circuit modeling of such systems is common [24], [25].
Combining the IDEM with the IEM extended in [20] can
consider not only inductance changes due to eddy currents
on the metallic case but also losses due to eddy currents in
the human body, which have not been considered in previous
studies.

Intrabody communications (IBCs) are another potential
application of the IDEM. Previous studies have attempted
circuit modeling of IBCs by distributed-element theory [26],
static potential analysis using the MoM [27], and fitting using
measured data [28], where the first two of these cannot handle
inductances, and the last one describes only the receiving
characteristics at a single frequency. In contrast to them, the
IDEM has the potential to perform circuit modeling with
higher accuracy. However, at the current stage, the IDEM
cannot consider the situation where the electrodes and the
human body are in contact, and it requires further extension.

In contrast, applications using far fields, including under-
sea communication systems [29] and position estimation

Fig. 1. Basis functions Fi and F j inside a lossless dielectric immersed in
a lossy dielectric.

systems [30], are beyond the scope of the IDEM because
the applicability of the IDEM is limited to electrically small
objects, as will be clarified in the following discussions.

The rest of this article is organized as follows: Section II
derives the theory of the IDEM; Section III discusses the fre-
quency range over which the IDEM can be applied; Section IV
presents the resulting circuit models of undersea dipole and
loop antennas; and Section V concludes this article.

II. THEORY

A. Overview

As shown in Fig. 1, basis functions Fi and F j , which
represent antenna currents, are assumed to be inside a lossless
dielectric with permittivity ε1 and permeability µ1, immersed
in a lossy dielectric of infinite volume with permittivity ε2,
permeability µ2, and conductivity σ2. By expanding the self-/
mutual impedance Z i j between Fi and F j into the Laurent
series with respect to the complex angular frequency s, the
circuit model of mutually coupled antennas is obtained. For
example, the impedance components proportional to s−1, s0,
and s are represented by capacitances, resistances, and induc-
tances, respectively. The IDEM is formulated to find the
self-/mutual impedances including the effect of the exterior
lossy dielectric. Since the formulation for multiple lossless
dielectrics is obvious, it is not presented here. This theory can
be applied without any modification to cases where a lossy
dielectric of finite volume is in free space, whereas the basis
functions Fi and F j are placed outside the lossy dielectric.

The self-/mutual impedance Z i j between Fi and F j can be
decomposed as follows:

Z i j = Z fs
i j + Z sc

i j . (1)

The free-space component Z fs
i j is the self-/mutual impedance

assuming that all of the space is filled with the lossless
dielectric and can be expanded as follows [20] and [21]:

Z fs
i j =

∞∑
k=−1

sk Z fs(k)
i j (2)

where Z fs(k)
i j is the coefficient for sk and Z fs(0)

i j = 0. In addition,
if Fi or F j are solenoidal, then Z fs(−1)

i j = Z fs(2)
i j = 0.

On the other hand, the scattering component Z sc
i j is due to

scattering by the surrounding lossy dielectric and can be
obtained through the following steps.
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1) Assuming I j F j to be an electric current source (I j

is the electric current coefficient for F j ), the equiv-
alent electric and magnetic current densities Jd and
Md, respectively, induced on the boundary between the
lossless and lossy dielectrics are obtained in the form of
the Taylor/Laurent series with respect to s1/2.

2) The scattered electric field produced by the equivalent
electric and magnetic currents in the form of the Laurent
series with respect to s1/2 is tested by Fi .

As a result, Z sc
i j can be obtained in the following form:

Z sc
i j =

∞∑
k=−2

sk/2 Z fs(k/2)
i j (3)

where Z sc(k/2)
i j is the coefficient for sk/2 and Z sc(−1/2)

i j =

Z sc(1/2)
i j = 0. In addition, if Fi or F j are solenoidal, then

Z sc(−1)
i j = Z sc(0)

i j = Z sc(3/2)
i j = 0. Whereas Z fs

i j and Z sc
i j in [20]

and [21] are expanded into the same form only with integer
powers of s as in (2), those in the IDEM are expanded into
different forms, which is due to the conductive nature of the
exterior lossy dielectric. In particular, the scattering component
includes a static resistance component Z sc(0)

i j , and the quadratic
component Z sc(2)

i j is nonzero even if Fi or F j are solenoidal
because of eddy current losses. Details of the theory are
explained in the rest of this section.

B. Matrix Equations for Equivalent Currents

To obtain Jd and Md that are induced by I j F j ,
the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT)
integral equations [31] are discretized as in [21]. To avoid rank
deficiency of coefficient matrices, Jd and Md are expanded
into the loop-star basis functions [32], [33] as follows:

Jd =

N⋆∑
j=1

I ⋆j F⋆
j +

N◦∑
j=1

I ◦

j F◦

j (4)

Md =

N⋆∑
j=1

V ⋆
j F⋆

j +

N◦∑
j=1

V ◦

j F◦

j (5)

where F⋆
j , I ⋆j , and V ⋆

j are the j th star basis function, elec-
tric, and magnetic current coefficients, respectively, whereas
F◦

j , I ◦

j , and V ◦

j are the j th loop (solenoidal) basis function,
electric, and magnetic current coefficients, respectively. Sub-
stituting (4) and (5) into the PMCHWT integral equations
satisfied on the boundary between the dielectrics and applying
Galerkin’s method yields[

Z̄⋆⋆ Ū⋆◦

Ū◦⋆ −Ȳ◦◦

][
I⋆
V◦

]
+

[
Z̄⋆◦ Ū⋆⋆

Ū◦◦ −Ȳ◦⋆

][
I◦

V⋆

]
= −

[
Z⋆ j

U◦ j

]
I j (6)[

Z̄◦⋆ Ū◦◦

Ū⋆⋆ −Ȳ⋆◦

][
I⋆
V◦

]
+

[
Z̄◦◦ Ū◦⋆

Ū⋆◦ −Ȳ⋆⋆

][
I◦

V⋆

]
= −

[
Z◦ j

U⋆ j

]
I j (7)

where Iυ and Vυ are Nυ × 1 electric and magnetic current
vectors, respectively, whose j th elements are I υj and V υ

j ,

respectively; Z̄τυ, Ȳτυ , and Ūτυ are Nτ × Nυ impedance,
admittance, and transfer matrices, respectively, whose (i, j)th
elements are the self-/mutual impedance, admittance, and
transfer coefficient between Fτ

i and Fυ
j , respectively; and

Zτ j and Uτ j are Nτ × 1 impedance and transfer vectors,
respectively, whose i th elements are the mutual impedance
and transfer coefficient between Fτ

i and F j , respectively
(τ, υ = ⋆, ◦).

C. Expansion of Matrices and Vectors

In the lossless case in [21], Z̄τυ, Ȳτυ , and Ūτυ are directly
expanded into the Taylor/Laurent series with respect to s.
In contrast, the IDEM first expands them into series with
respect to the propagation constants, wherein their (i, j)th
elements are as follows:

[
Z̄τυ

]
i j =

∞∑
k=−1

(
ζ1γ

k
1 + ζ2γ

k
2

)
X

(
Fτ

i , Fυ
j , k

)
[
Ȳτυ

]
i j =

∞∑
k=−1

(
γ k

1

ζ1
+
γ k

2

ζ2

)
X

(
Fτ

i , Fυ
j , k

)
[
Ūτυ

]
i j =

∞∑
k=0

(
γ k

1 + γ k
2

)
W

(
Fτ

i , Fυ
j , k

)


(8)

where ζ1 =
√
µ1/ε1 and ζ2 =

√
sµ2/(σ2 + sε2) are the wave

impedances in the lossless and lossy dielectrics, respectively;
γ1 = s

√
ε1µ1 and γ2 =

√
(σ2 + sε2)sµ2 are the propagation

constants in the lossless and lossy dielectrics, respectively;
and X (Fτ

i , Fυ
j , k) and W (Fτ

i , Fυ
j , k) are integrals involving

Fτ
i and Fυ

j , which are identical to those in [21].
Since ζ2 depends on s and γ2 is not linearly proportional to

s, the terms containing ζ2 and γ k
2 in (8) are further expanded

using the binomial theorem as follows:

ζ2γ
k
2 =

(sµ2σ2)
(k+1)/2

σ2

∞∑
l=0

(
(k − 1)/2

l

)(
sε2

σ2

)l

γ k
2

ζ2
= σ2(sµ2σ2)

(k−1)/2
∞∑

l=0

(
(k + 1)/2

l

)(
sε2

σ2

)l

γ k
2 = (sµ2σ2)

k/2
∞∑

l=0

(
k/2

l

)(
sε2

σ2

)l


(9)

all of which converge if ωε2 < σ2, where ω = ℑ(s). In other
words, the loss tangent should be greater than 1. Substituting
ζ1 =

√
µ1/ε1, γ1 = s

√
ε1µ1, and (9) into (8) then rearranging,

the following expanded expressions can be obtained:

Z̄τυ =

∞∑
k=−2

sk/2Z̄(k/2)τυ , Ȳτυ =

∞∑
k=−2

sk/2Ȳ(k/2)
τυ

Ūτυ =

∞∑
k=0

sk/2Ū(k/2)
τυ

. (10)

Specific expressions for the elements of the matrices in (10)
are shown in Appendix A.
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On the other hand, similar to those in [21], Zτ j and Uτ j

in (6) and (7) can be expanded as follows:

Zτ j =

∞∑
k=−1

skZ(k)τ j , Uτ j =

∞∑
k=0

skU(k)
τ j . (11)

In line with the fact that (10) contains components of
half-integer degrees with respect to s, Iυ and Vυ in (6) and (7)
are expanded as follows:

Iυ =

∞∑
k=0

sk/2I(k/2)υ , Vυ =

∞∑
k=−2

sk/2V(k/2)
υ (12)

where it is assumed that V(k/2)
⋆ = 0 if k < 2.

Substituting (10)–(12) into (6) and (7), the equality holds
for each power of s1/2, that is,[

Z̄(−1)
⋆⋆ Ū(0)

⋆◦

0̄ −Ȳ(0)
◦◦

][
I(k/2)⋆

V(k/2−1)
◦

]

= −

[
Z(k/2−1)
⋆ j

U(k/2−1)
◦ j

]
I j −

k∑
l=2

[
Z̄(l/2−1)
⋆⋆ Ū(l/2)

⋆◦

Ū(l/2−1)
◦⋆ −Ȳ(l/2)

◦◦

][
I(k/2−l/2)
⋆

V(k/2−l/2−1)
◦

]

−

k∑
l=4

[
Z̄(l/2−1)
⋆◦ Ū(l/2−2)

⋆⋆

Ū(l/2−1)
◦◦ −Ȳ(l/2−2)

◦⋆

][
I(k/2−l/2)
◦

V(k/2−l/2+1)
⋆

]
, k ≥ 0

(13)[
Z̄(1)

◦◦
Ū(0)

◦⋆

Ū(0)
⋆◦ −Ȳ(−1)

⋆⋆

][
I(k/2−1)
◦

V(k/2)
⋆

]

= −

[
Z(k/2)

◦ j

U(k/2−1)
⋆ j

]
I j −

k∑
l=0

[
Z̄(l/2)◦⋆ Ū(l/2+1)

◦◦

Ū(l/2−1)
⋆⋆ −Ȳ(l/2)

⋆◦

][
I(k/2−l/2)
⋆

V(k/2−l/2−1)
◦

]

−

k∑
l=4

[
Z̄(l/2)◦◦ Ū(l/2−1)

◦⋆

Ū(l/2−1)
⋆◦ −Ȳ(l/2−2)

⋆⋆

][
I(k/2−l/2)
◦

V(k/2−l/2+1)
⋆

]
, k ≥ 2

(14)

which correspond to (28) and (29) in [21], respectively,
but differ in several points. First, matrices and vectors of
half-integer degrees are included. Second, the matrix on the
left-hand side of (13) is asymmetric because the lowest degree
of Ȳ(k/2)

◦◦ differs from that in the lossless case.
The unknown vectors on the left-hand sides of (13) and (14)

can be obtained in the following procedure. First, substituting
k = 0 into (13) yields[

Z̄(−1)
⋆⋆ Ū(0)

⋆◦

0̄ −Ȳ(0)
◦◦

][
I(0)⋆

V(−1)
◦

]
= −

[
Z(−1)
⋆ j
0

]
I j (15)

which can be solved for I(0)⋆ and V(−1)
◦

. It is obvious that
V(−1)

◦
= 0 and I(0)⋆ is determined only by Z̄(−1)

⋆⋆ and Z(−1)
⋆ j .

This is similar to the case of perfectly conducting scatterers
in [20], which means that lossy dielectrics behave like perfect
conductors for electrostatic fields. Then, substituting k =

1 into (13) yields[
Z̄(−1)
⋆⋆ Ū(0)

⋆◦

0̄ −Ȳ(0)
◦◦

][
I(1/2)⋆

V(−1/2)
◦

]
=

[
0
0

]
(16)

which obviously results in I(1/2)⋆ = V(−1/2)
◦ = 0. For k ≥ 2,

if I(0)⋆ , . . . , I(k/2−1)
⋆ ,V(−1)

◦
, . . . ,V(k/2−2)

◦ , I(0)
◦
, . . . , I(k/2−2)

◦ , and

Fig. 2. Basis function F1 inside a lossless dielectric sphere immersed in a
lossy dielectric.

V(1)
⋆ , . . . ,V(k/2−1)

⋆ are known, (13) can be solved for I(k/2)⋆ and
V(k/2−1)

◦ . Using I(k/2)⋆ and V(k/2−1)
◦ , (14) can then be solved for

I(k/2−1)
◦ and V(k/2)

⋆ . This process can be performed sequentially
for k = 2, 3, . . ..

D. Testing Scattered Electric Fields

The scattering component Z sc
i j can be obtained by testing

the scattered field by Fi , that is,

Z sc
i j = −

1
I j

∫
S

Fi · Escd S

=
1
I j

{[
Zi⋆ Ui◦

][ I⋆
V◦

]
+

[
Zi◦ Ui⋆

][ I◦

V⋆

]}
(17)

where Esc is the scattered electric field produced by the
equivalent electric and magnetic currents, whereas Ziυ and
Uiυ are 1 × Nυ impedance and transfer vectors, respectively,
whose j th elements are the mutual impedance and transfer
coefficient between Fi and Fυ

j , respectively. Similar to those
in [21], Ziυ and Uiυ in (17) can be expanded as follows:

Ziυ =

∞∑
k=−1

skZ(k)iυ , Uiυ =

∞∑
k=0

skU(k)
iυ . (18)

Substituting (12) and (18) into (17), Z sc(k/2)
i j in (3) can be

obtained as follows:

Z sc(k/2)
i j =

1
I j

{ k∑
l=−2

[
Z(l/2)i⋆ U(l/2+1)

i◦

][ I(k/2−l/2)
⋆

V(k/2−l/2−1)
◦

]

+

k∑
l=2

[
Z(l/2)i◦ U(l/2−1)

i⋆

][ I(k/2−l/2)
◦

V(k/2−l/2+1)
⋆

]}
.

(19)

III. APPLICABLE FREQUENCY OF THE IDEM

The applicable frequency of the conventional IEMs in [20]
and [21] is limited mainly by the electrical size of the
scatterers, whereas that of the IDEM is expected to be limited
also by the radius of convergence in (9). Accordingly, this
section focuses on both these factors.

As shown in Fig. 2, a lossless dielectric sphere with a radius
r and relative permittivity εr1 is immersed in a lossy dielectric
of infinite volume with relative permittivity εr2 = 80 and
conductivity σ2. The relative permeability of the lossless and
lossy dielectrics is 1. A piecewise linear basis function F1 with
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Fig. 3. Frequency dependence of the error in Z sc
11 at L = 4, 8, 16, 32, and

64 (r = 20 mm, εr1 = 1, and σ2 = 4 S/m).

Fig. 4. fmax versus L at σ2 = 1, 2, 3, and 4 S/m (r = 20 mm and εr1 = 1).

a length of 10 mm is positioned at the center of the sphere. The
numbers of the star and loop basis functions on the surface of
the sphere are N⋆ = 863 and N◦ = 865, respectively.

The scattering component Z sc
11 is approximated by a series

of finite degree L and is denoted by Z̃ sc
11 as follows:

Z̃ sc
11 =

2L∑
k=−2

sk/2 Z sc(k/2)
11 . (20)

In addition, its full-waveform is obtained by substituting the
solution of (6) and (7) into (17). Then, the error defined below
is evaluated as

Error =
∣∣Z̃ sc

11/Z sc
11 − 1

∣∣. (21)

Fig. 3 shows the frequency dependence of the error in Z sc
11

at L = 4 to 64 (r = 20 mm, εr1 = 1, and σ2 = 4 S/m). Below
approximately 74 MHz, the error is smaller for larger L , but
its slope is steeper. Thus, regardless of L , the error reaches
approximately 10−3 at approximately 74 MHz. Based on this
observation, the frequency at which the error in Z sc

11 exceeds
the tolerance of 10−3 is defined as the maximum applicable
frequency fmax.

Fig. 4 shows the dependence of fmax on L at σ2 = 1, 2,
3, and 4 S/m (r = 20 mm and εr1 = 1). For any value of
σ2, fmax converges to each specific frequency as L increases.
Hereafter, fmax at L = 64, which can be regarded as a nearly
convergent value, will be evaluated.

Fig. 5. fmax versus σ2 at r = 20, 40, and 80 mm (εr1 = 1 and L = 64).

Fig. 6. fmax versus σ2 at εr1 = 20, 40, and 80 (r = 20 mm and L = 64).

In Fig. 5, the circular, triangular, and square markers rep-
resent the dependence of fmax on σ2 at r = 20, 40, and
80 mm, respectively (εr1 = 1 and L = 64). In addition,
the solid, dashed, and chained lines represent the frequencies
satisfying 0.113λ2 = 20, 40, and 80 mm, respectively (λ2 is
the wavelength in the lossy dielectric), whereas the dotted line
represents the frequency satisfying ωε0εr2 = σ2 (ε0 is vacuum
permittivity). The result shows that fmax approximately coin-
cides with the lower of the frequencies satisfying 0.113λ2 = r
and ωε0εr2 = σ2. In other words, the applicable frequency of
the IDEM is limited by both the electrical size of the lossless
dielectric and the radius of convergence in (9), as expected.

Then, the effect of the relative permittivity εr1 of lossless
dielectric on fmax is evaluated. In Fig. 6, the circular, trian-
gular, and square markers represent the dependence of fmax
on σ2 at εr1 = 20, 40, and 80, respectively (r = 20 mm and
L = 64). In addition, the solid, dashed, and chained lines
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Fig. 7. Undersea dipole antennas with pure water covers.

represent the frequencies satisfying ωε0εr2 = 0.68σ2, 0.51σ2,
and 0.34σ2, respectively, whereas the dotted line represents the
frequency satisfying 0.113λ2 = 20 mm. The result shows that
the slope of the line approximating fmax at small σ2 decreases
with increasing εr1. Moreover, an additional parameter study
found that the slope satisfies the following empirical formula:

ωε0(αεr1 + εr2) ≃ σ2 (22)

where α is a constant that depends mainly on the shape of
the lossless dielectric. For example, α ≃ 1.96 and 4.3 if the
lossless dielectric is spherical and cubic, respectively. At this
stage, the reason why this empirical formula holds is unclear
and will need to be investigated further in the future.

IV. CIRCUIT MODELING OF UNDERSEA ANTENNAS

In this section, to demonstrate the applicability of the IDEM,
circuit modeling of near-field coupled undersea dipole and
loop antennas enclosed in pure water covers is performed, and
the effects of the covers on the circuit parameters are clarified.
It is emphasized that the geometries of these antennas are
basic, whereas those of the covers are arbitrary.

A. Undersea Dipole Antennas

As shown in Fig. 7, straight dipoles 1 and 2 that are
composed of perfectly conducting wires of radius 0.4 mm
are separately enclosed in pure water covers (εr1 = 80).
Although actual pure water has a conductivity of approx-
imately 0.2 mS/m (distilled water) to 20 mS/m (drinking
water) [8], its conductivity is assumed to be zero because
the degree of conductivity has little effect on results. The
dipoles and covers are mirror symmetric about the xy, xz,
and yz planes passing through the central point on the line
segment between the ports 1 and 2. The outside of the covers is

Fig. 8. Circuit model of the undersea dipole antennas.

assumed to be seawater (εr2 = 80 and σ2 = 4 S/m). Practically,
the pure water and seawater should be separated by a solid
material such as a resin. However, such a separating material
is not considered for simplicity. Since the dipoles and covers
fit into a sphere whose radius is approximately 114 mm, the
IDEM applies to frequencies up to approximately 2.43 MHz,
according to the discussion in Section III.

In the usual MoM, current distributions of antennas are
discretized into multiple basis functions. However, this leads
to an increase in the size of the resulting circuit model and
thus spoils its advantages. Therefore, the current distributions
of dipoles 1 and 2 are approximated only by piecewise linear
basis functions F1 and F2, respectively. The numbers of the
star and loop basis functions on the surfaces of the pure water
covers are N⋆ = 1406 and N◦ = 1410, respectively. The
difference in the resulting circuit parameters when the number
of basis functions is increased by four times was confirmed to
be less than 0.16%.

The self- and mutual impedances between ports 1 and 2 are
approximated by a Laurent series of finite order as follows:

Z i j ≃ s−1 Z (−1)
i j + Z (0)i j + s Z (1)i j + s3/2 Z (3/2)i j (23)

where Z (−1)
21 = 0 because no electrostatic field can exist in the

seawater, which separates F1 and F2. In addition, Z (0)i j and
Z (3/2)i j consist only of the scattering components, where the
former is caused by the steady-state currents in seawater and
the latter represents the radiation loss of equivalent electric
dipole moments in an extended sense, as discussed later.

Fig. 8 shows the circuit model of the undersea dipole
antennas, where Vi and Ii are the voltage and current of
port i , respectively (i = 1, 2). The capacitances represent the
self-impedance components proportional to s−1, that is,

Ci = 1/Z (−1)
i i . (24)

The resistances represent the impedance components indepen-
dent of s, that is,

R1 =
Z (0)11 Z (0)22 − Z (0)221

Z (0)22 − Z (0)21

, R2 =
Z (0)11 Z (0)22 − Z (0)221

Z (0)11 − Z (0)21

R21 =
Z (0)11 Z (0)22

Z (0)21

− Z (0)21

. (25)

The self- and mutual inductances correspond to the impedance
components proportional to s, that is,

L i j = Z (1)i j . (26)
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The dependent voltage sources represent the voltage drops
caused by the impedance components proportional to s3/2, that
is,

1Vi =

2∑
j=1

s3/2 Z (3/2)i j I j . (27)

Table I summarizes the circuit parameters of the undersea
dipole antennas with and without the pure water covers. The
resistances without the covers can be obtained by substituting

Z (0)i j =
1
σ2

X (Fi , F j ,−1) (28)

into (25). The expression in (28) corresponds to the fact
that the near-field produced by an electric dipole in lossy
dielectrics can be approximated as inversely proportional to
conductivity and independent of frequency [34]. On the other
hand, the other parameters without the covers can be expressed
as follows:

L i j = µ0 X (Fi , F j , 1)−
ε0εr2

σ 2
2

X (Fi , F j ,−1) (29)

Z (3/2)i j = µ
3/2
0 σ

1/2
2 X (Fi , F j , 2) (30)

where µ0 is vacuum permeability. These parameters without
the covers were obtained analytically. Although (29) is the
expression for those without the covers, it implies that the
self- and mutual inductances of the undersea dipole antennas
with the covers depend not only on permeability but also
permittivity and conductivity. In addition, X (Fi , F j , 2) in (30)
can be expressed as follows [17]:

X (Fi , F j , 2) = −
1

6π

(∫
S

Fi d S
)

·

(∫
S

F j d S
)

(31)

where S is the support of Fi and F j , and each integral
represents an electric dipole moment. Approximating ζ2 ≃
√

sµ0/σ2 and γ2 ≃
√

sµ0σ2, and integrating the far-field
Poynting vector caused by the equivalent electric dipole
moments over the spherical surface of radius r yields

Pr =
ω3/2µ

3/2
0 σ

1/2
2 e−2α2r

21/26π

×

2∑
i=1

2∑
j=1

I ∗

i I j

(∫
S

Fi d S
)

·

(∫
S

F j d S
)

(32)

which is always positive and equal to the power dissipated
by the impedance components Z (3/2)i j in (30) multiplied by
the attenuation factor e−2α2r , where α2 = ℜ(γ2). Therefore,
Z (3/2)i j can be regarded as radiation resistances in an extended
sense. According to Table I, the resistances R1 = R2 and
R21 are significantly reduced by approximately 60% and 91%,
respectively, by the presence of the covers. On the other hand,
the self-inductances L11 = L22 are reduced by approximately
2.3% and the mutual inductance L21 is increased by approxi-
mately 6.7%. Although these changes are not very significant,
they are to be expected from (29). Meanwhile, the relation
Z (3/2)11 ≃ Z (3/2)21 holds regardless of the presence or absence
of the covers, which can be predicted from (31), that is, the
equivalent electric dipole moments of F1 and F2 are parallel.

TABLE I
CIRCUIT PARAMETERS OF UNDERSEA DIPOLE ANTENNAS

Fig. 9. Dipole antennas with a power source, a load, and MCs.

Since the heat loss due to seawater causes an increase in
its conductivity, the effect of the conductivity on the circuit
parameters is discussed briefly. As described earlier, seawater
behaves as a perfect conductor for electrostatic fields, so the
capacitances are independent of the conductivity. On the other
hand, the other parameters depend on the conductivity as
expected from (28)–(30), that is, Z (0)i j and Z (3/2)i j are propor-
tional to σ−1

2 and σ 1/2
2 , respectively, whereas Z (1)i j converges

to a constant value when σ2 becomes somewhat large.
Then, the dipole antennas with a power source, a load,

and matching circuits (MCs), which is shown in Fig. 9, are
evaluated. The parallel inductor of Lp = 2.993 µH and the
series inductor of Ls = 2.245 mH are selected so that the
antennas are matched with the source and load of R0 = 50 �
at 400 kHz.

Fig. 10 shows the frequency dependences of the reflec-
tion coefficient |S11| and transmission coefficient |S21| of the
undersea dipole antennas with the pure water covers, where
the results by the circuit model, full-wave MoM (FW-MoM),
and finite-difference time-domain (FDTD) method [35] are
compared. In the FW-MoM, the currents of the wires are
expanded into 30 piecewise linear basis functions, whereas
the basis functions on the surface of the covers are the same
as those in the IDEM. In the FDTD method, the cell size
is 2 mm inside the covers and increases up to 10 mm away
from the covers. The dimensions of the computational domain
are 0.5 × 0.5 × 0.5 m. The absorbing boundary condition is
the perfectly matched layer of 64 layers. The results by the
FW-MoM and FDTD results are in good agreement, in general.
As the discrepancy between these resonant frequencies is only
0.038%, they can be regarded as reference solutions. On the
other hand, the result of the circuit model shows that the peak
value of |S21| is approximately the same as those by the
other methods, but the resonant frequency is approximately
0.28% higher than that by the FW-MoM. This discrepancy is
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Fig. 10. Frequency dependences of (a) reflection coefficient |S11| and
(b) transmission coefficient |S21| of the undersea dipole antennas with the
pure water covers.

because the current of each dipole is approximated by a single
piecewise linear basis function to derive the circuit model.
Although this discrepancy can be resolved by increasing the
number of basis functions representing the current distributions
of the wires, improving the accuracy while keeping the size
of the circuit model small is a future challenge. In addition,
although not shown in the figure, it has been confirmed that the
resulting S-parameters hardly change even if the impedance
components Z (3/2)i j are ignored.

As already shown theoretically, in the absence of the pure
water covers, the power dissipated by the impedance com-
ponents Z (3/2)i j multiplied by the attenuation factor e−2α2r is
equivalent to the radiation loss in the extended sense (integral
value of the far-field Poynting vector). To verify whether this
relationship holds in the presence of the pure water covers,
the power dissipated by the impedance component Z (3/2)i j is
compared with the radiation loss calculated by the FW-MoM.
The radiation loss Pr in the circuit model is obtained as
follows:

Pr =

2∑
i=1

2∑
j=1

ℜ

[
s3/2 Z (3/2)i j I ∗

i I j

]
. (33)

Note that the attenuation factor is excluded here, and the same
is applied to the subsequent evaluations. On the other hand,
the radiation loss in the FW-MoM is obtained by integrating
the far-field Poynting vector. For reference, Fig. 11 shows the
realized gain (Eθ component at 400 kHz) of the undersea

Fig. 11. Realized gain of the undersea dipole antennas with the pure water
covers (Eθ component at 400 kHz, calculated by the FW-MoM).

Fig. 12. Frequency dependence of the radiation loss of the undersea dipole
antennas with the pure water covers, where the results by the circuit model
and FW-MoM are based on (33) and (35), respectively.

dipole antennas with the pure water covers. Note that its
definition is extended for antennas in a conductive space as
in [37], that is,

Gψ = lim
r→∞

4πr2
ℜ

(
ζ−1

2

)
|Eψ |

2

e−2α2r Pava
, ψ = θ, ϕ. (34)

Note that the one in [37] is an absolute gain with respect to
the input power, whereas the one defined by (34) is a realized
gain with respect to the available power Pava. By integrating
the far-field Poynting vector with such directivity over the
spherical surface of radius r , and then dividing it by the
attenuation factor e−2α2r , the radiation loss Pr in the FW-MoM
can be obtained as follows:

Pr = lim
r→∞

r2
ℜ

(
ζ−1

2

)
e−2α2r

∫ 2π

0

∫ π

0
|E|

2 sin θ dθ dϕ. (35)

Fig. 12 shows the frequency dependence of the radiation
loss Pr of the undersea dipole antennas with the pure water
covers calculated by the circuit model and FW-MoM, where
the available power of the power source is assumed to be
Pava = 1 W. As with the S-parameters, there is a discrepancy
in the resonant frequency, but the peak values and general
trends are similar, indicating that the equivalence of both holds
even in the presence of the pure water covers.
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Fig. 13. Undersea loop antennas with pure water covers.

B. Undersea Loop Antennas

As shown in Fig. 13, square loops 1 and 2 are composed
of perfectly conducting wires of radius 0.4 mm are separately
enclosed in pure water covers (εr1 = 80) whose conductivity is
assumed to be zero. The loops and covers are mirror symmetric
about the xy and xz planes passing through the central point
on the line segment between the loop centers. The outside
of the covers is assumed to be seawater (εr2 = 80 and
σ2 = 4 S/m). As in the case of the dipole antennas, a solid
material separating seawater and pure water is not considered
for simplicity. Since the loops and covers fit into a sphere
whose radius is approximately 158 mm, the IDEM applies to
frequencies up to approximately 1.27 MHz, according to the
discussion in Section III.

The current distributions of loops 1 and 2 are expressed
by filamentary basis functions F1 and F2 that are uniform
along the wire axes, respectively. The numbers of the star and
loop basis functions on the surfaces of the pure water covers
are N⋆ = 2158 and N◦ = 2162, respectively. The difference
in the resulting circuit parameters when the number of basis
functions is increased by four times was confirmed to be less
than 0.025%.

Since F1 and F2 are assumed to be solenoidal, that is,
Z (−1)

i j = Z (0)i j = Z (3/2)i j = 0, the self- and mutual impedances
between ports 1 and 2 are approximated by a Taylor series of
finite order as follows:

Z i j ≃ s Z (1)i j + s2 Z (2)i j + s5/2 Z (5/2)i j (36)

Fig. 14. Circuit model of the undersea loop antennas.

TABLE II
CIRCUIT PARAMETERS OF UNDERSEA LOOP ANTENNAS

where Z (2)i j and Z (5/2)i j consist only of the scattering compo-
nents, the former of which is obtained as follows:

Z sc(2)
i j =

[
Z(1)i◦ U(0)

i⋆

][ I(1)
◦

V(2)
⋆

]
(37)

where I(1)
◦

corresponds to the eddy current caused by the
magnetostatic field due to I j F j and Faraday’s law. Note
that [36] has also shown that eddy currents are linearly
proportional to the frequency. According to (37), I(1)

◦
and

Fi are coupled through mutual inductances Z(1)i◦ , resulting in
Z sc(2)

i j . This interpretation theoretically supports the discussion
in [16]. On the other hand, Z (5/2)i j represents the radiation loss
of an equivalent magnetic dipole moment in an extended sense,
as discussed later.

Fig. 14 shows the circuit model of the undersea loop
antennas, where Vi and Ii are the voltage and current of port i ,
respectively (i = 1, 2). The self- and mutual inductances
correspond to the impedance components proportional to s,
as in (26). The dependent voltage sources represent the voltage
drops caused by the impedance components proportional to
s2 and s5/2, that is,

1Vi =

2∑
j=1

[
s2 Z (2)i j + s5/2 Z (5/2)i j

]
I j (38)

where the contribution of the quadratic components can also
be approximated only by passive elements [19].

Table II summarizes the circuit parameters of the undersea
loop antennas with and without the pure water covers, the
latter of which can be expressed as follows:

L i j = µ0 X (Fi , F j , 1) (39)

Z (2)i j = µ2
0σ2 X (Fi , F j , 3) (40)

Z (5/2)i j = µ
5/2
0 σ

3/2
2 X (Fi , F j , 4). (41)

These parameters without the covers were obtained analyt-
ically. Unlike (29), the expression in (39) does not contain
the term dependent on permittivity and conductivity because
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Fig. 15. Loop antennas with a source, a load, and MCs.

F1 and F2 are solenoidal. Therefore, it is identical to the
self-/mutual inductance in free space. In addition, as proved
in Appendix B, since Fi and F j are solenoidal, X (Fi , F j , 4)
in (41) can be expressed as follows:

X (Fi , F j , 4) =
1

6π

(∫
S

r × Fi

2
d S

)
·

(∫
S

r × F j

2
d S

)
(42)

where r is the position vector and each integral represents a
magnetic dipole moment. Approximating ζ2 ≃

√
sµ0/σ2 and

γ2 ≃
√

sµ0σ2, and integrating the far-field Poynting vector
caused by the equivalent magnetic dipole moments over the
spherical surface of radius r yields

Pr =
ω5/2µ

5/2
0 σ

3/2
2 e−2α2r

21/26π

×

2∑
i=1

2∑
j=1

I ∗

i I j

(∫
S

r × Fi

2
d S

)
·

(∫
S

r × F j

2
d S

)
(43)

which is always positive. On the other hand, the power due
to the impedance components Z (5/2)i j in (41) multiplied by the
attenuation factor e−2α2r is equal in magnitude to Pr in (43),
but its sign is opposite, that is, it contributes negatively to
the total loss. Thus, the physical interpretation of Z (5/2)i j is
complicated, but the discussion proceeds as if Z (5/2)i j is related
to the radiation loss, as in the case of the dipole antennas
in Section IV-A. According to Table II, the self- and mutual
inductances with the covers are approximately the same as
those without the covers. In other words, it is supported
that the self- and mutual inductances between undersea loop
antennas can be identified by Neumann’s formula in free
space, regardless of the presence or absence of pure water
covers. In contrast, the quadratic impedance components are
reduced by the presence of the pure water covers, which
means the reduction of the eddy current losses. Meanwhile,
the relation Z (5/2)11 ≃ Z (5/2)21 holds regardless of the presence or
absence of the covers, which can be predicted from (42), that
is, the equivalent magnetic dipole moments of F1 and F2 are
parallel.

In addition, whereas the inductances are independent of
the conductivity as described earlier, Z (2)i j and Z (5/2)i j are
proportional to σ2 and σ 3/2

2 , respectively, as expected from (40)
and (41).

Then, the loop antennas with a power source, a load, and
MCs, which are shown in Fig. 15, are evaluated. The parallel

Fig. 16. Frequency dependences of (a) reflection coefficient |S11| and
(b) transmission coefficient |S21| of the undersea loop antennas with the pure
water covers.

capacitor of Cp = 142.1 nF and the series inductor of Ls =

39.05 nH are selected so that the antennas are matched with
the source and load of R0 = 50 � at 400 kHz.

Fig. 16 shows the frequency dependences of the reflec-
tion coefficient |S11| and transmission coefficient |S21| of the
undersea loop antennas with the pure water covers, where the
results by the circuit model, FW-MoM, and FDTD method
are compared. In the FW-MoM, the currents of the wires
are expressed by 126 piecewise linear basis functions in
addition to the uniform loop basis functions, whereas the
basis functions on the surface of the covers are the same
as those in the IDEM. The computational conditions for the
FDTD method are similar to those in the case of the undersea
dipole antennas. The good agreement between the results of
the three methods indicates their validity. In particular, the
assumption of uniform current distribution for each loop in
deriving the circuit model is considered to be a good enough
approximation. In addition, although not shown in the figure,
it has been confirmed that the resulting S-parameters hardly
change even if the impedance components Z (5/2)i j are ignored.

As already shown theoretically, in the absence of the pure
water covers, the power due to the impedance components
Z (5/2)i j multiplied by the attenuation factor e−2α2r is equal
in magnitude and opposite in sign to the radiation loss in
the extended sense. To verify how this relationship holds in
the presence of the pure water covers, the power due to the
impedance components Z (5/2)i j is compared with the radiation
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Fig. 17. Realized gain of the undersea loop antennas with the pure water
covers (Eϕ component at 400 kHz, calculated by the FW-MoM).

Fig. 18. Frequency dependence of the radiation loss of the undersea loop
antennas with the pure water covers, where the results by the circuit model
and FW-MoM are based on (44) and (35), respectively.

loss calculated by the FW-MoM. The radiation loss Pr in the
circuit model is obtained as follows:

Pr = −

2∑
i=1

2∑
j=1

ℜ

[
s5/2 Z (5/2)i j I ∗

i I j

]
. (44)

On the other hand, the radiation loss in the FW-MoM is
obtained by integrating the far-field Poynting vector based
on (35), as in the case of the dipole antennas. For reference,
Fig. 17 shows the realized gain (Eϕ component at 400 kHz) of
the undersea loop antennas with the pure water covers. Fig. 18
shows the frequency dependence of the radiation loss Pr of the
undersea loop antennas with the pure water covers calculated
by the circuit model and FW-MoM, where the available power
of the power source is assumed to be Pava = 1 W. There is a
difference of approximately 2 dB in the radiation loss obtained
by the two methods. Although the cause of this difference
is not clear, the presence of the pure water covers, which
were not assumed in the aforementioned theoretical discussion,
is one possible reason for the difference. In fact, additional
numerical calculations have verified that the radiation losses
obtained by the two methods are identical if no pure water
cover and uniform current distributions are assumed in both
the circuit model and FW-MoM. Nevertheless, the trends of
the frequency dependence in Fig. 18 are consistent, suggesting

that the radiation losses by the two methods are related to each
other even in the presence of the pure water covers.

C. Computational Cost

The memory usage and execution time for the IDEM
are discussed in comparison to the FW-MoM. The compar-
ison is based on the case of the undersea loop antennas
described in Section IV-B. Both methods were implemented
with double-precision data and parallelized with OpenMP.
The execution times were measured on a workstation with
an Apple M1 Ultra system-on-a-chip (3.2 GHz × 16 cores +

2.0 GHz × 4 cores).
The memory usage for storing the matrix elements in

the FW-MoM is approximately 1.23 GB, whereas that in
the IDEM is approximately 2.09 GB. Thus, at least in this
condition, the IDEM requires more memory than the FW-
MoM. However, the advantage of the IDEM is its much shorter
execution time, as described below.

The execution time in the FW-MoM was approximately
17.5 s per frequency (13.9 s for matrix generation and
3.64 s for LU factorization). On the other hand, the execution
time for obtaining the circuit parameters in the IDEM was
approximately 22.5 s [21.8 s for matrix generation and 0.64 s
for solving (13), (14), and (19)], which is longer than the
execution time per frequency in the FW-MoM. However, the
resulting circuit model requires only approximately 5.88 µs
per frequency during the frequency sweep. Therefore, when
obtaining results at more than a few frequencies, the IDEM
requires much less execution time than the FW-MoM, which
demonstrates the advantage of the circuit modeling by the
IDEM.

V. CONCLUSION

In this study, the IEM was further extended to be applied to
circuit modeling of near-field coupled undersea antennas. The
extended method is called the IDEM because of its feature that
the coefficient matrices derived by the MoM are first expanded
with respect to the propagation constants, and then further
expanded with respect to the complex angular frequency.

The IDEM can be applied to frequencies where the lossless
dielectric is electrically small and the loss tangent of the
lossy dielectric is greater than a certain value. For example,
if the lossless dielectric is spherical, its radius must be less
than 0.113 times the wavelength in the surrounding lossy
dielectric. If the permittivity of the lossless dielectric is much
smaller than that of the lossy dielectric, the loss tangent of the
lossy dielectric must be greater than 1. As the permittivity of
the lossless dielectric increases, the loss tangent of the lossy
dielectric must become larger.

The IDEM was applied to undersea dipole and loop anten-
nas with pure water covers, and their circuit models were
obtained. The circuit model of the undersea dipole antennas
consists of capacitors, resistors, inductors, and impedance
components proportional to s3/2, where the resistances are
greatly reduced by the presence of the water covers. In addi-
tion, the power dissipated by the impedance components
proportional to s3/2 corresponds to the radiation loss in the
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extended sense (power obtained by integrating the far-field
Poynting vector on a sphere of radius r and dividing it by the
attenuation factor e−2α2r ).

On the other hand, the circuit model of the undersea loop
antennas consists of inductors and impedance components
proportional to s2 and s5/2. Among them, the inductance
values are hardly affected by the pure water covers and can be
identified by Neumann’s formula in free space. In addition, the
impedance components proportional to s2 represent the eddy
current loss in the seawater, which supports the discussion
in the previous study. Furthermore, the power due to the
impedance components proportional to s5/2 is negative, and its
absolute value is approximately 2 dB larger than the radiation
loss in the extended sense, but their trends of the frequency
dependence are consistent, suggesting that they are related to
each other.

These circuit models provide a reasonable approximation
of the S-parameters between antennas with MCs. However,
in the case of the dipole antennas, the current distribution of
each element is approximated by a single basis function, which
causes errors that need to be reduced in the future.

In addition, since the computational cost of the frequency
sweeping using the circuit model is negligible, the IDEM
requires much less execution time than that in the FW-MoM,
which demonstrates the advantage of the circuit modeling by
the IDEM.

APPENDIX A
ELEMENTS OF EXPANDED MATRICES IN (10)

If k is even, then the (i, j)th elements of Z̄(k/2)τυ , Ȳ(k/2)
τυ , and

Ū(k/2)
τυ in (10) are expressed as follows:[

Z̄(k/2)τυ

]
i j =

√
µ1

ε1
(ε1µ1)

k/4 X
(
Fτ

i , Fυ
j , k/2

)
+

1
σ2

k/2∑
l=0

(
l − 1

k/2 − l

)(
ε2

σ2

)k/2−l

× (µ2σ2)
l X

(
Fτ

i , Fυ
j , 2 l − 1

)
(45)[

Ȳ(k/2)
τυ

]
i j =

√
ε1

µ1
(ε1µ1)

k/4 X
(
Fτ

i , Fυ
j , k/2

)
+ σ2

k/2+1∑
l=0

(
l

k/2 + 1 − l

)(
ε2

σ2

)k/2+1−l

× (µ2σ2)
l−1 X

(
Fτ

i , Fυ
j , 2 l − 1

)
(46)[

Ū(k/2)
τυ

]
i j = (ε1µ1)

k/4W
(
Fτ

i , Fυ
j , k/2

)
+

k/2∑
l=0

(
l

k/2 − l

)(
ε2

σ2

)k/2−l

× (µ2σ2)
l W

(
Fτ

i , Fυ
j , 2 l

)
. (47)

If k is odd, then

[
Z̄(k/2)τυ

]
i j =

1
σ2

(k−1)/2∑
l=1

(
l − 1/2

(k − 1)/2 − l

)(
ε2

σ2

)(k−1)/2−l

× (µ2σ2)
l+1/2 X

(
Fτ

i , Fυ
j , 2 l

)
(48)

[
Ȳ(k/2)
τυ

]
i j = σ2

(k+1)/2∑
l=1

(
l + 1/2

(k + 1)/2 − l

)(
ε2

σ2

)(k+1)/2−l

× (µ2σ2)
l−1/2 X

(
Fτ

i , Fυ
j , 2 l

)
(49)[

Ū(k/2)
τυ

]
i j =

(k−1)/2∑
l=1

(
l + 1/2

(k − 1)/2 − l

)(
ε2

σ2

)(k−1)/2−l

× (µ2σ2)
l+1/2W

(
Fτ

i , Fυ
j , 2 l + 1

)
. (50)

APPENDIX B
PROOF OF (42)

According to (6) in [21], if Fi and F j are solenoidal, then
X (Fi , F j , 4) is expressed as follows:

X (Fi , F j , 4) = −
1

24π

∫
S

∫
S

Fi · F′

j |r − r ′
|
2d S′d S (51)

where r ′ is the position vector of the source point, and F′

j and
d S′ are with respect to r ′. From the chain rule and ∇ · Fi = 0,
the following relation holds:

∇ · (ξ Fi ) = ξ̂ · Fi (52)

where ξ = x, y, z, and ξ̂ is the unit vector along the ξ -axis.
Surface-integrating the both sides of (52) over S with respect
to r and using the surface divergence theorem yields∫

S
ξ̂ · Fi d S = 0. (53)

Therefore, the following relation holds:∫
S

Fi d S = 0. (54)

Similarly, the following relation also holds:∫
S

F′

j d S′
= 0. (55)

Using |r − r ′
|
2

= |r|2 −2r · r ′
+|r ′

|
2, (54), and (55), then (51)

can be rewritten as follows:

X (Fi , F j , 4) =
1

12π

∫
S

∫
S

(
Fi · F′

j

)
(r · r ′)d S′d S. (56)

To further transform (56), some other relations will be derived
hereafter. First, from the vector triple product, the following
relation holds:

r ×
(
r ′

× F′

j

)
= (F′

j · r)r ′
− F′

j (r · r ′). (57)

Integrating the both sides of (57) yields∫
S

r ×
(
r ′

× F′

j

)
d S′

=

∫
S

(
F′

j · r
)
r ′d S′

−

∫
S

F′

j

(
r · r ′

)
d S′. (58)

Besides, from the chain rule and ∇
′
· F′

j = 0, the following
relation holds:

∇
′
·
[
F′

j

(
r · r ′

)
ξ ′

]
=

(
F′

j · r
)
ξ ′

+
(
F′

j · ξ̂
)(

r · r ′
)

(59)

where ξ = x, y, z, and ξ ′ and ∇
′ are with respect to r ′.

Surface-integrating the both sides of (59) over S with respect
to r ′ and using the surface divergence theorem yields∫

S

(
F′

j · r
)
ξ ′d S′

+

∫
S

(
F′

j · ξ̂
)(

r · r ′
)
d S′

= 0. (60)
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Therefore, the following relation holds:∫
S

(
F′

j · r
)
r ′d S′

+

∫
S

F′

j

(
r · r ′

)
d S′

= 0. (61)

Eliminating the term containing (F′

j · r)r ′ from (58) and (61)
yields ∫

S
F′

j

(
r · r ′

)
d S′

= −
1
2

∫
S

r ×
(
r ′

× F′

j

)
d S′. (62)

Taking the dot product of both sides of (62) with Fi , using the
scalar triple product, and surface-integrating both sides over S
with respect to r yields∫

S

∫
S

(
Fi · F′

j

)(
r · r ′

)
d S′

=
1
2

(∫
S

r × Fi d S
)

·

(∫
S

r ′
× F′

j d S′

)
. (63)

Substituting (63) into (56) and removing the primes, then (42)
is finally obtained.
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