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Abstract— In this article, a novel method of moments (MoM)
for numerical analysis of antennas over a 2-D infinite periodic
array of scatterers is proposed. The proposed MoM models the
2-D infinite periodic array of scatterers as a reflecting plane,
i.e., electromagnetic response of the 2-D infinite periodic array of
scatterers is formulated via their reflection coefficient. In a similar
manner to a layered media Green’s function, self/mutual coupling
between source and observation points over the 2-D infinite
periodic array of scatterers is formulated as a superposition of
direct wave component and TE/TM reflection wave components.
Numerical simulation is performed, and performance of the
proposed MoM is demonstrated. The proposed MoM has a couple
of advantages. The first and second ones are mesh-free/numerical
modelings of the 2-D infinite periodic array of scatterers via their
reflection coefficient. The mesh-free modeling contributes to small
computational cost whereas the numerical modeling enables to
deal with the 2-D infinite periodic array of arbitrary-shaped
scatterers. The third one is ease of combination with existent
numerical analysis tool of the 2-D infinite periodic array of
scatterers.

Index Terms— Method of moments (MoM), periodic Green’s
function.

I. INTRODUCTION

AN INFINITE periodic array of scatterers has been widely
used for modeling frequency selective surfaces (FSSs),

metameterials, and unitcells of reflectarrays [1], [2], [3].
Numerical analysis of the infinite periodic array of scatterers
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has been one of the classic problems and so-called periodic
boundary condition is well known as an efficient approach
for their modeling during numerical analysis [4]. According
to the periodic boundary condition, the infinite periodic array
of scatterers is reduced to an unitcell. As a result, scattering
performance of the infinite periodic array of scatterers can be
obtained efficiently. For example, method of moments (MoM)
with periodic Green’s function is a powerful technique for
numerical analysis of the infinite periodic array of scatterers
under the periodic boundary condition [5], [6], [7]. Owing
to recent advancement of commercial simulator software,
numerical analysis of the infinite periodic array of scatterers
under the periodic boundary condition can be performed easily.

On the other hand, antennas over a periodic array of scatter-
ers have been developed so far. For example, the antennas over
artificial magnetic conductor (AMC) have been proposed for
suppressing mutual coupling between antennas or designing
low-profile antennas [8]. A photonic bandgap (PBG) structure
has been introduced as a ground plane of the reflectarrays
for enhancing their gain [9]. Although numerical analysis of
the infinite periodic array of the scatterers can be performed
efficiently under the periodic boundary condition, numerical
analysis of the antennas over the periodic array of the scatter-
ers cannot be performed efficiently. For example, one of the
straightforward approaches is full-wave analysis of the anten-
nas over a finite periodic array of the scatterers. Effect of the
finite periodic array of the scatterers on the performance of the
antennas can be obtained accurately using this straightforward
approach but this approach is often computationally too expen-
sive because the periodic array of the scatterers is modeled as
a finite and large array. Of course, so-called fast MoM such as
a characteristic basis function method (CBFM) [10], [11], [12]
or a conjugate gradient method combined with discreate/fast
Fourier transform [13], [14], [15] is helpful for reducing the
computational cost, but the large computational cost is still
inevitable as the number of the scatterers increases. Another
approach is to enforce the periodic boundary condition for
modeling the antennas over the periodic array of the scatterers.
This approach is computationally efficient but poor accuracy
is expected because the antennas themselves are not always
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the periodic arrays. As mentioned here, an efficient numerical
analysis method of the antennas over the periodic array of the
scatterers is expected to be developed.

Extensive efforts have been dedicated to developing the
efficient numerical analysis method of the antennas over
the periodic array of the scatterers. Array scanning method
(ASM) is an approach to obtain a field radiated from a single
source point over the periodic array of scatterers [16], [17],
[18], [19], [20], [21], [22], and [23]. The radiated field from a
single line or dipole source is reconstructed from the radiated
field of an array of the line or dipole sources whose periodicity
is the same as that of the scatterers. Although the ASM
is computationally efficient, performance of the ASM has
been demonstrated only for ideal sources over the periodic
array of the scatterers. It has not been demonstrated that
the ASM is applicable for numerical analysis of practical
antennas over the periodic array of arbitrary-shaped scatter-
ers. A surface impedance model has been introduced to a
dyadic Green’s function for modeling the periodic array of
the scatterers [24], [25]. Although the surface impedance
model is applicable to the periodic array of the practical
scatterers such as microstrip patches, its applicability is limited
because a closed form expression of the surface impedance
is only available for a specific periodic array of scatterers,
such as an array of patches over a substrate [26]. Moreover,
numerical results of the MoM using the dyadic Green’s
function with the surface impedance model are absent for the
works. The surface impedance model has been combined with
finite difference time domain (FDTD) method and applied to
numerical analysis of a dipole antenna over a metasurface
composed of a rectangular patch on a dielectric slab [27].
It has been reported that accuracy of input impedance of
the dipole antenna is insufficient whereas its radiation pattern
shows good agreement with that of the dipole antenna over the
finite periodic array. To the best of our knowledge, an efficient
numerical analysis method for arbitrary-shaped antennas over
the 2-D infinite periodic array of arbitrary-shaped scatterers
has not been proposed so far.

In this article, a novel MoM for numerical analysis of
antennas over a 2-D infinite periodic array of scatterers is
proposed. The proposed MoM deals with the 2-D infinite
periodic array of scatterers as a reflecting plane and their elec-
tromagnetic response is modeled via reflection coefficients.
In a similar manner to a layered media Green’s function,
self/mutual coupling between source and observation points
over the 2-D infinite periodic array of scatterers is formulated
as a superposition of a direct wave component and TE/TM
reflection wave components. The direct wave component is
expressed using the free-space Green’s function whereas the
TE/TM reflection wave components are expressed using the
numerically obtained reflection coefficients combined with
a plane wave expansion. Owing to the formulation of the
electromagnetic response of the 2-D infinite periodic array
of scatterers via reflection coefficients, the proposed MoM
is mesh-free for the 2-D infinite periodic array of scatterers.
Moreover, the proposed MoM is applicable to numerical
analysis of arbitrary-shaped antennas over the 2-D infinite
periodic array of arbitrary-shaped scatterers.

Fig. 1. Source and observation points over 2-D infinite periodic array of
scatterers.

This article is organized as follows. Formulation of the
proposed MoM is described in Section II. Numerical simu-
lation is performed, and performance of the proposed MoM is
demonstrated in Section III. Finally, this article is concluded
in Section IV.

II. FORMULATION

Fig. 1 shows source and observation points over a 2-D
infinite periodic array of scatterers. Here, self/mutual coupling
between the source and the observation points over the 2-D
infinite periodic array of scatterers is formulated under follow-
ing assumptions.

1) The reflection coefficients of the 2-D infinite periodic
array of scatterers are numerically obtained at z = d,
where d is the height of a reference plane of the
reflection coefficients.

2) The source and the observation points are above the ref-
erence plane of their reflection coefficients, i.e., z′ > d
and z > d .

3) Effect of reflecting wave corresponding to evanescent
wave on self/mutual coupling is neglected because of
simplicity. This assumption is justified when the source
and observation points are away from the 2-D infi-
nite periodic array of scatterers. Mathematically, this
assumption can be described as k2

z = k2
0 − k2

x − k2
y ≥ 0.

Here, k0 is wavenumber in free space. kx = k0sinθcosφ,
ky = k0sinθsinφ, and kz = k0cosθ are wave numbers
in free space corresponding to x-, y-, and z-directions,
respectively.

A. Propagation Factor

In the same manner, as derivation of the layered media
Green’s function, so-called propagation factor between the
source and the observation points is described in a spectral
domain as follows [28]:

F = e− jkz|z−z′
|
+ Be− jkz z (1)

where e− jkz|z−z′
| corresponds to direct wave from the source

point to the observation point whereas e− jkz z corresponds
to reflection wave from the 2-D infinite periodic array of
scatterers. B is unknown coefficient of the reflection wave.
Since the reflection wave at z = d results from reflection of
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the direct wave by the 2-D infinite periodic array of scatterers,
unknown coefficient B is expressed as follows:

Be− jkzd
= 0z=0(θ, φ)e− jkz|d−z′

|

B = 0z=0(θ, φ)e− jkz(z′
−2d)

(
∵ z′ > d

)
= 0z=d(θ, φ)e− jk ′

z z (2)

where 0z=d(θ, φ) = 0z=0(θ, φ)e j2 kzd is the reflection coeffi-
cient of the 2-D infinite periodic array of scatterers at z = d.
Finally, (2) is substituted into (1), the propagation factor is
obtained as follows:

F = e− jkz|z−z′
|
+ 0z=d(θ, φ)e− jkz(z′

+z). (3)

According to (3), the propagation factor corresponding to TE
and TM reflection waves can be described as follows:

FTE/TM
= 0TE/TM

z=d (θ, φ)e− jkz(z′
+z). (4)

It should be noted that 0TE
z=d(θ, φ) in (4) is the reflection

coefficient of the electric field whereas the 0TM
z=d(θ, φ) is the

reflection coefficient of the magnetic field [28].

B. Reduced Forms of Dyadic Green’s Functions

Once electromagnetic response from the 2-D infinite peri-
odic array of scatterers is described via their reflection
coefficient, the 2-D infinite periodic array of scatterers can
be modeled as a reflecting plane whose reflection coefficient
is known. As a result, self/mutual coupling between the source
and observation points over the 2-D infinite periodic array of
scatterers can be described in the same manner as the layered
media Green’s function as follows [28], [29], [30]:

G
(
r, r′

)
≈ G

D(
r, r′

)
+ G

TE(
r, r′

)
+

1
k2

0
G

TM(
r, r′

)
G

D(
r, r′

)
=

(
I +

∇∇

k2
0

)
e− jk0|r−r′

|

4π |r − r′|

≈

(
I +

∇∇

k2
0

)(
− jk0

8π2

)
∫ 2π

0

∫ π
2

0
e− jk·(r−r′)sinθdθdφ (5)

G
TE(

r, r′
)

≈
− jk0φ̂φ̂

8π2

∫ 2π

0

∫ π
2

0
e− jkxy ·(ρxy−ρ ′

xy)

FTEsinθdθdφ (6)

G
TM(

r, r′
)

≈
− jk3

0 θ̂ θ̂

8π2

∫ 2π

0

∫ π
2

0
e− jkxy ·(ρxy−ρ ′

xy)

FTMsinθdθdφ. (7)

Here, r′
= (x ′, y′, z′) and r = (x, y, z) are position vectors

corresponding to the source and the observation points, respec-
tively. k = (kx , ky, kz) is a wavenumber vector in free space,
and kxy = (kx , ky), ρ ′

xy = (x ′, y′), ρxy = (x, y). φ̂ and θ̂ are
unit vectors corresponding to φ- and θ -directions in a spher-

ical coordinate system, respectively. G
D

is a dyadic Green’s
function of free space and corresponds to direct wave from

the source point to the observation point. G
TE

and G
TM

are
dyadic Green’s functions corresponding to the reflection waves

from the 2-D infinite periodic array of scatterers. As mentioned
earlier, effect of reflecting wave corresponding to evanescent
wave on self/mutual coupling is neglected here. Therefore,
it should be noted that. Equations (5)–(7) are reduced forms
of the dyadic Green’s functions. Formulation of (5)–(7) is
described in Appendix.

C. Self/Mutual Impedance Expressions

According to the MoM based on an electric field inte-
gral equation, self/mutual impedance between the source and
observation points over the 2-D infinite periodic array of
scatters is expressed as follows:

Z i j = jωµ0

∫∫
S

∫∫
S′

fi
(
r′

)
· G

(
r, r′

)
· f j (r)dr′dr

= ZD
i j + ZTE

i j + ZTM
i j

ZD
i j = jωµ0

∫
S

∫
S′

fi
(
r′

)
· G

D(
r, r′

)
· f j (r)dr′dr

= jωµ0

∫
S

∫
S′

fi
(
r′

)
·

(
I +

∇∇

k2
0

)
e− jk0|r−r′

|

4π |r − r′|
· f j (r)dr′dr (8)

≈
ωµ0k0

8π2

∫ 2π

0

∫ π
2

0

[{∫
S

e− jk·r(f j (r) · φ̂
)
dr

}
{∫

S′

e jk·r′(
fi
(
r′

)
· φ̂

)
dr′

}
+

{∫
S

e− jk·r(f j (r) · θ̂
)
dr

}
{∫

S′

e jk·r′(
fi
(
r′

)
· θ̂

)
dr′

}]
sinθdθdφ (9)

ZTE
i j = jωµ0

∫
S

∫
S′

fi
(
r′

)
· G

TE(
r, r′

)
· f j (r)dr′dr

≈
ωµ0k0

8π2

∫ 2π

0

∫ π
2

0

{∫
S

e− j(kxy ·ρxy+kz z)
(
f j (r) · φ̂

)
dr

}
0TE

z=d(θ, φ)

{∫
S′

e j(kxy ·ρ
′
xy−k ′

z z)
(
fi
(
r′

)
· φ̂

)
dr′

}
sinθdθdφ (10)

ZTM
i j =

jωµ0

k2
0

∫
S

∫
S′

fi
(
r′

)
· G

TM(
r, r′

)
· f j (r)dr′dr

≈
ωµ0k0

8π2

∫ 2π

0

∫ π
2

0

{∫
S

e− j(kxy ·ρxy+kz z)
(
f j (r) · θ̂

)
dr

}
0TM

z=d(θ, φ)

{∫
S′

e j(kxy ·ρ
′
xy−k ′

z z)
(
fi
(
r′

)
· θ̂

)
dr′

}
sinθdθdφ. (11)

Here, fi (r′) and f j (r) are a basis function for current at the
i th source point and a testing function for current at the j th
observation point, respectively. S′ and S are area where fi (r′)

and f j (r) are defined. It is found that spatial integration over
S′ and S are completely separated for (9)–(11) because the
reduced forms of the dyadic Green’s function are expressed
using a plane wave expansion. It should be noted that the
mutual impedance corresponding to direct wave is obtained
using (8), not (9) in practice. Equation (9) is used only for
validating accuracy and convergence of the mutual impedance
expressions using plane wave expansion as follows.
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Fig. 2. Convergence of mutual impedance between two coplanar PEC plates
obtained using reduced forms of dyadic Green’s functions (w = 0.1 m).

Fig. 3. Convergence of mutual impedance between two coplanar PEC plates
obtained using reduced forms of dyadic Green’s functions (w = 0.2 m).

III. NUMERICAL SIMULATION

A. Validation

Here, accuracy and convergence of the self/mutual
impedance expressions using the reduced forms of the dyadic
Green’s functions are discussed in advance of numerical
analysis of antennas over the 2-D infinite periodic array of
scatterers. Figs. 2–5 show mutual impedance between two
coplanar/parallel PEC plates. Mutual impedance between the
plates is obtained using (8) and (9), i.e., the plates are in free
space. Rao–Wilton–Glisson (RWG) basis function is used for
both of the basis/testing functions [34]. Spatial integrals over
S and S′ of (9) are performed analytically whereas spectral
integrals over θ and φ of (9) are performed numerically.
Gauss–Legendre quadrature with L quadrature points and
trapezoidal quadrature with 2L quadrature points are applied
to numerical quadrature for θ and φ, respectively.

According to Figs. 2–5, it is found that a large number
of quadrature points are necessary for convergence of mutual
impedance obtained using (9) as spacing between the plates
increases. As mentioned earlier, the reduced forms of the
dyadic Green’s functions are expressed by the plane wave
expansion and complex exponential functions included in the

Fig. 4. Convergence of mutual impedance between two parallel PEC plates
obtained using reduced forms of dyadic Green’s functions (w = 0.1 m).

Fig. 5. Convergence of mutual impedance between two parallel PEC plates
obtained using reduced forms of dyadic Green’s functions (w = 0.2 m).

reduced forms (i.e., e− jk·r or e jk·r′

) are highly oscillatory
when r or r′ increases. Therefore, convergence of the mutual
impedance obtained using (9) is slow and a large number of
quadrature points are necessary when the spacing between the
plates increases. From a physical viewpoint, mutual coupling
via far-field components is kept in (9) whereas that via
evanescent wave components is lost. As a result, real part
of the mutual impedance obtained using (9) agrees well with
that obtained using (8) whereas relatively large discrepancy is
found between its imagenary part and that using (8).

Fig. 6 shows input impedance of a planar dipole antenna
on an infinite ground plane using the proposed method. In the
proposed method, mutual coupling between the source and
observation points via the infinite ground plane is obtained
from (10) and (11) with 0TE

z=0(θ, φ) = −1 for TE wave and
0TM

z=0(θ, φ) = 1 for TM wave [28]. To clarify the performance
of the proposed method, numerical results obtained using the
MoM with the layered media Green’s function (Full-wave) are
shown [29], [30], [35]. Although the proposed method neglects
the effect of the evanescent wave components, it is found that
the numerical results obtained using both of the methods agree
well each other.
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Fig. 6. Input impedance of planar dipole antenna on infinite ground plane.

Fig. 7. Relative error of input impedance at resonant frequency of dipole
antenna.

Accuracy and applicability of the proposed method are
evaluated via a relative error of the input impedance which
is defined as follows:

ε =
|Z L

in( f ) − Z R
in( f )|

|Z L
in( f )|

where Z L
in( f ) and Z R

in( f ) are the input impedances at fre-
quency f obtained using the layered media Green’s function
and its reduced forms, respectively. Fig. 7 shows a relative
error of the input impedance of the planar dipole antenna
on the infinite ground plane using the proposed method.
It is found that the relative error is below 30% when
h > 0.15 m (i.e., ≈ 0.14λ@ f = 280 MHz). For example,
the relative error is 22% for the input impedance at f =

280 MHz when h = 0.15 m. According to the results,
it is expected that the proposed method works for numerical
analysis of antennas over the 2-D infinite periodic array of the
scatterers when h > 0.14λ. On the other hand, it is found that
the proposed method suffers from large error when h < 0.14λ
because the effect of the evanescent wave which is neglected
in the proposed method is dominant.

Fig. 8. Directivity of planar dipole antenna on infinite ground plane (Eφ on
xz plane).

Fig. 9. Directivity of planar dipole antenna on infinite ground plane (Eθ on
yz plane).

Directivities of the planar dipole antenna over the infinite
ground plane are shown in Figs. 8 and 9. It is found that
directivities obtained using the proposed method agree well
with those of the full-wave analysis except fot small shift
(≈ 0.9 dB) of their magnitude.

B. Numerical Analysis of Antennas Over FSS

Here, antennas over a 2-D infinite periodic array of scatter-
ers are numerically analyzed using the MoM with the reduced
forms of the dyadic Green’s functions. A planar dipole antenna
over a planar dipole FSS and a rectangular loop antenna
over a circular loop FSS are shown in Figs. 10 and 11,
respectively. The antennas over the FSS are practically used
for RCS reduction or multiband applications [36], [37], [38],
and [39]. Although the antennas over the FSS in this work
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Fig. 10. Planar dipole antenna over planar dipole FSS.

Fig. 11. Rectangular loop antenna over circular loop FSS.

have not been designed for specific applications, effect of
the FSS on the radiation performance of the antennas can be
demonstrated. In advance of numerical analysis of the antennas
over the FSSs, reflection coefficients of the FSSs are calculated
and tabulated. Our in-house code based on the MoM with
the periodic Green’s function is used for numerical analysis
of the FSSs. Detailed descriptions on the periodic Green’s
function or relevant theories such as Floquet theorem are found
in [2], [4], and [5]. Singularity at a source point is annihilated
using L’Hospital rule [6], [7]. Poor convergence of the periodic
Green’s function is enhanced using Ewald transformation
with the optimum splitting parameter [31], [32], and [33].
RWG basis function is used for both of the basis/testing
functions [34].

Input impedance of the antennas over the FSSs is shown
in Figs. 12 and 13. In the proposed method, (8) is used
for calculating the self/mutual impedance corresponding to
the direct wave whereas (10) and (11) are used for calcu-
lating those corresponding to the TE/TM reflection waves.
Singularity where the source point and the observation point
are overlapped is annihilated using coordinate transformation
and analytic integral [40], [41]. Input impedance of both of
the antennas over finite 7 × 7 FSSs and isolated antennas
(w/o FSS) is also shown in Figs. 12 and 13 as references
because full-wave analysis of the antennas over the infinite
FSSs is unavailable. In advance of numerical analysis, it has
been confirmed that the input impedance of the antennas
over the finite FSSs converges even when the number of
scatterers increase. According to Figs. 12 and 13, it is found
that the effect of mutual coupling between the antenna and

Fig. 12. Input impedance of planar dipole antenna over planar dipole FSS.

Fig. 13. Input impedance of rectangular loop antenna over circular loop FSS.

the scatterers is reflected to the input impedance obtained
using the MoM with the reduced form of Green’s function.
As a result, the input impedance of the antennas over the
infinite FSSs approaches to that over the finite 7 × 7 FSSs.
Of course, perfect agreement between the input impedance
of the planar dipole antennas over the infinite/finite FSSs is
unavailable and a certain amount of discrepancy is found.
The discrepancy between the input impedances stems from
the effect of the evanescent wave that is lost from the reduced
forms of the dyadic Green’s functions. Therefore, it is expected
that the discrepancy between the input impedances become
small as h increases as shown in Fig. 7.

Directivities of the antennas over the FSSs in xz plane
are shown in Figs. 14 and 15. It is found that the directivity
of the planar dipole antenna over the planar dipole FSS
drops around θ = 40◦. whereas that of the rectangular loop
antenna over the circular loop FSS is roughly omnidirectional.
To clarify the effect of the FSSs on the directivities of
the antennas, reflection coefficients of the FSSs are shown
in Figs. 16 and 17. As shown in Fig. 16, the planar dipole
FSS is transparent around θ = 40◦. whereas it is opaque at
remaining angles. Therefore, it is found that the drop of the
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Fig. 14. Directivity of planar dipole antenna over planar dipole FSS (Eφ on
xz plane).

Fig. 15. Directivity of rectangular loop antenna over circular loop FSS
(Eφ on xz plane).

Fig. 16. Reflection coefficient of planar dipole FSS [TE incidence on xz
plane, 0TE

z=0(θ, φ = 0)].

directivity around θ = 40◦. comes from reflection performance
of the planar dipole FSS. On the other hand, the circular

Fig. 17. Reflection coefficient of circular loop FSS [TE incidence on xz
plane, 0TE

z=0(θ, φ = 0)].

Fig. 18. Directivity of planar dipole antenna over planar dipole FSS (Eθ on
yz plane).

loop FSS is roughly opaque over all angles of θ as shown
in Fig. 17. Therefore, it can be said that reflection performance
of the circular loop FSS is similar to that of the ground
plane in xz plane. As a result, directivity of the rectangular
loop antenna over the circular loop FSS is similar to that of
the planar dipole antenna over the ground plane as shown
in Fig. 8. Although perfect agreement between directivities of
the antennas over infinite/finite FSSs is unavailable, their main
lobe levels and radiation patterns are found to be comparable.
Ideally, directivities obtained using the proposed MoM are
expected to agree with those using the full-wave MoM if the
full-wave MoM can deal with the antennas over the infinite
FSSs. Directivities of the antennas over the FSSs in yz plane
shown in Figs. 18 and 19 can also be explained by the
reflection coefficients of the FSSs shown in Figs. 20 and 21.
The discussion is lengthy and omitted here.

Computational cost of the MoM with the reduced form
of Green’s function is tabulated in Table I. Here, the total

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on February 14,2024 at 06:12:10 UTC from IEEE Xplore.  Restrictions apply. 



KONNO et al.: NOVEL MOM FOR NUMERICAL ANALYSIS OF ANTENNAS 57

TABLE I
COMPUTATIONAL COST

Fig. 19. Directivity of rectangular loop antenna over circular loop FSS (Eθ

on yz plane).

Fig. 20. Reflection coefficient of planar dipole FSS [TM incidence on yz
plane, 0TM

z=0(θ, φ = 90◦)].

CPU time for numerical analysis of the antennas over the FSS
at 61 frequency points from 100 to 400 MHz is tabulated.
According to Table I, it is found that the total CPU time for
numerical analysis of the antennas over the finite FSS is long
because of the large number of unknowns N . On the other
hand, the total CPU time for numerical analysis of the antennas
over the infinite FSS using the MoM with the reduced forms

Fig. 21. Reflection coefficient of circular loop FSS [TM incidence on yz
plane, 0TM

z=0(θ, φ = 90◦)].

of the dyadic Green’s function is short because of the small
number of unknowns N . Therefore, it can be concluded that
the MoM with the reduced form of Green’s function is an
efficient technique for numerical analysis of the antennas over
the 2-D infinite periodic array of scatterers.

IV. CONCLUSION

In this article, a novel MoM for numerical analysis of anten-
nas over a 2-D infinite periodic array of scatterers has been
proposed. The proposed MoM models the 2-D infinite periodic
array of scatterers as a reflecting plane and its electromagnetic
response is formulated as a Green’s function. Electromagnetic
waves from the source point to the observation point over
the 2-D in finite periodic array of scatterers are expressed
as summation of a direct wave and TE/TM reflection waves.
The direct wave is expressed using the free space Green’s
function whereas the TE/TM reflection waves is expressed
using the numerically obtained reflection coefficients with the
plane wave expansion. Because the electromagnetic response
of the two-dimensional infinite periodic array of scatterers
is expressed via reflection coefficients, the proposed MoM
is mesh-free for the 2-D infinite periodic array of scatterers.
Numerical simulation was performed, and it has been demon-
strated that the proposed MoM works efficiently for numerical
analysis of the arbitrary-shaped antennas over the 2-D infinite
periodic array of the arbitrary-shaped scatterers.

Although performance of the proposed MoM has been
demonstrated in this article, a couple of problems to be
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challenged are still remaining. The first one is modeling of the
effect of the evanescent waves. The evanescent waves from the
2-D infinite periodic array of scatterers correspond to higher
order Floquet modes that are absent in this work. Modeling
of the effect of the evanescent waves is not easy because
the reflection coefficients of the 2-D infinite periodic array
of scatterers corresponding to the higher order Floquet modes
could be tensor, not scalar, i.e., TM components of reflection
waves come from TE incidence and vice versa. The second
one is efficient computation of the reflection coefficients of
the 2-D infinite periodic array of scatterers. As mentioned
earlier, a large number of quadrature points L are necessary for
calculating mutual impedance between source and observation
points as their spacing increase. Therefore, an efficient com-
putation method of the reflection coefficients is necessary for
numerical analysis of large-scale antennas over the 2-D infinite
periodic array of scatterers. These problems are challenges in
the future.

APPENDIX
FORMULATION OF REDUCED FORM OF

DYADIC GREEN’S FUNCTION

Here, the reduced form of the dyadic Green’s function in
a space above the 2-D infinite periodic array of scatterers is
derived starting from the layered media Green’s function. For
convenience, the layered media Green’s function is revisited
as follows:
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)(
∇

′
× ẑ
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According to well-known Weyl identity, a scalar Green’s
function in free space shown in (12) is expressed in spectral
domain as follows:
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According to reciprocity, it is assumed that z− z′
≥ 0 without

loss of generality. Therefore, (17) can be reduced under the

assumption of k2
z = k2

0 − k2
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y ≥ 0 as follows:
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Once (18) is substituted into (12), (5) is readily obtained.
In the same manner as deriving (18), (6) and (7) are obtained
from (13) to (16). The equivalent expression of (18) is found
in previous works [42], [43].
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