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Abstract—In this letter, a machine learning assisted antenna 

optimization method is proposed based on the random forest (RF) 

algorithm with data augmentation (DA). Using only a small 

number of samples, the prediction and optimization accuracy of 

the RF algorithm is ensured with repeated data augmentation, 

which balances different types of samples during the training. 

With the proposed DA-RF method, the AR bandwidth of a 

circularly polarized omnidirectional base station antenna is 

optimized. By learning the relationship between the loop 

orientations and the AR bandwidth efficiently, the AR bandwidth 

is improved by 41% compared with the best one in the samples. 

The estimation accuracy of the proposed method outperforms 

other similar methods, with fewer iterations as well. The method 

is also successfully applied to multi-objective optimizations.  

Index Terms—Antenna optimization, base station antennas, 

data augmentation, circularly polarization, machine learning, 

random forest (RF). 

I. INTRODUCTION

HE advancement of machine learning (ML) in

electromagnetics (EM) provides new approaches for 

antenna design [1]-[4]. The framework of the ML-assisted 

antenna design is shown in Fig. 1, where the dataset is 

dynamically updated as the ML model learns. The ML model 

can replace part of the computationally intensive EM 

simulations, and make the antenna design procedure time 

efficient.  

Different ML-based methods have been exploited to 

optimize the antennas. Dynamic graph convolutional neural 

networks (DGCNNs) [5] and artificial neural network (ANN) 

[6] have been utilized to predict the objective parameters of the

antenna, though the predicted result deviates a bit from that

using the EM simulators. A deep neural network (DNN)

method can achieve reliable optimization using a huge number

of randomly generated samples (e.g., 105-106 samples) [7].

However, larger number of samples indicate a considerable

amount of time for EM simulations. In [8], a ML-based

surrogate-assisted particle swarm optimization method can

provide favorable results with a much smaller number of EM

This work was supported in part by (1) National natural science foundation 

of China (No. 61971087); (2) LiaoNing Revitalization Talents Program (No. 

XLYC1907074); (3) China Postdoctoral Science Foundation (No. 

2019T120200 and No. 2018M631779). Jiapeng Zhang, Jiawen Xu and Hui Li 

are with School of Information and Communication Engineering, Dalian 

University of Technology, Dalian, 116024, China. Qiang Chen is with Research 

Institute of Electrical Communication, Tohoku University, 980-8577, Japan. 

(Corresponding author: Hui Li) 

EM Simulation Dataset ML Model Results

Initialize

Update

Train Predict

Verify

Fig. 1.  Framework of the ML-assisted antenna design optimization. 

simulations. In [9], an improved KNN method requires only 10-

100 samples, with some prior knowledge during the learning 

process. An ANN method with 100 training data samples has 

also been used to optimize a Fabry-Perot (FP) resonator antenna 

with three geometrical variables [10]. 

Random forest (RF) is a supervised learning algorithm [11] 

for classification and regression [12], [13], with decision trees 

as the base learner. In [14], RF algorithm is used as a classifier 

to process multipath information and improve the performance 

of the time difference of arrival (TDOA) localization system. 

As a regression surrogate model in antenna design, the 

computational overhead of the RF is low, since the method is 

less affected by the size of the dataset [15]-[17]. RF can also 

predict multiple objectives, which are the real and imaginary 

parts of electric fields in [18]. For multi-objective optimization, 

ANN and Gaussian process regression (GPR) are efficient 

methods as well without requiring any new simulations [19].  

In this letter, an improved method based on RF is proposed 

for antenna estimation, which requires a small number of 

samples and provides good prediction accuracy. Data 

augmentation (DA) based on sample classifications is carried 

out to balance the datasets and increase the prediction accuracy. 

The method is applied to a circularly polarized omnidirectional 

base station antenna, in order to achieve wider AR bandwidth, 

higher gain and better roundness. As a result, antenna 

performances have been improved by 90 MHz, 0.8 dBi and 0.33 

dB during single-objective optimizations, compared with the 

best values in the samples.  

II. DA-RF OPTIMIZATION METHOD

This section describes the DA-RF based method in predicting 

the optimal antenna parameters. The regression model of RF 

algorithm is employed, which consists of multiple regression 

trees. The final output of the model is jointly determined by all 

the decision trees in the forest, which is independent from each 

other. 

The RF regressor is implemented according to the following 

steps: 
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1) Use Bootstrap to generate training subsets for each

decision tree; 

2) Randomly extract features for node splitting to establish

decision trees, which are combined to form a random forest; 

3) Average the outputs of all the decision trees, which is

provided as the final output. 
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Fig. 2.  The optimization process of the proposed DA-RF method. 

The optimization process using the proposed DA-RF method 

is given in Fig. 2. Firstly, for an optimization with N  

objectives, antenna design parameters are put into the EM 

simulators to obtain a dataset : i ijx y → (j=1,2…N). Typically, 

the original dataset from the simulations is divided into a 

training set and a test set with the ratio of 9:1. Afterwards, the 

multiple objectives are weighted based on the statistical 

distribution of the samples, transforming the multi-objective 

issue to a single-objective problem. Since the few-shot learning 

could result in sample imbalance using different construction 

methods, data augmentation is introduced to improve the RF-

based method. The augmented dataset is then trained using the 

RF model. Based on the training results, the antenna design 

parameters that lead to better target values are predicted on the 

refined grid g1 of the input 'x . The predicted target value is 

denoted as eS , with its corresponding design parameters 

denoted as 'ex .

Those design parameters are then simulated in the full-wave 

EM simulators for validation. If the simulated value 'eS  is

better than eS , the training dataset is then updated with the new 

dataset, and the learning process is iterated. Otherwise, the 

optimization is terminated, and the optimal results are obtained. 

The critical procedures, including target reconstruction and data 

augmentation, are illustrated in details in the following sub-

sections.  

A. Construction of Composite Metric

For a multi-objective optimization, it is difficult to achieve

optimal values for all the objectives at the same time. In order 

to simplify the multi-objective optimization, a composite metric 

S with weighted objectives is utilized: 

1

N

j j

j

S w y
=

= ,         (1) 

where jw is the weighting coefficients for the j-th objective yj. 

Compared with single-objective optimizations, the multi-

objective optimization, when weighted together, faces the 

problem of different scales. To balance the contribution of 

different objectives, the weighting coefficient of the j-th 

objective is calculated from 
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 is the averaged value of the j-th objective in the 

training dataset. The training process is then applied to learn the 

mapping relationship ( ): ,i j jx S w y → . 

B. Data Augmentation

To obtain the initial dataset, uniform grid is adopted over the 

antenna design parameters, which is similar to conventional 

parameter sweepings in the EM simulators. A small number of 

samples would result in imbalanced dataset measured by the 

target. For example, there are much more samples with narrow 

bandwidth than those with large bandwidth. The imbalanced 

data in the training set prevents the algorithm from learning 

more essential features, resulting in unrobust model.  
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Fig. 3.  Data augmentation for improving the accuracy of the RF-based method. 

To balance the datasets, the training dataset d  is classified 

into three groups based on the target values, i.e., good dataset 

Ad , medium dataset Bd and bad dataset Cd . Afterwards,

data augmentation based on stratified oversampling is exploited 

to balance the number of the samples in different groups, as 

illustrated in Fig. 3. Different from the general oversampling 

that is applied to all the dataset with no differences, the stratified 

oversampling is carried out differently for different layers. If 

the number of data is small in one dataset, more samples are 

selected and added back, and vice versa. That is to say, the 

oversampling in different datasets is performed inversely 

proportional to the number of the data in that dataset. The 

oversampling procedure is repeated until the numbers of the 

data in different layers are almost the same, so that the features 

for different datasets can be well learned.  Considering the time 

cost in the EM simulators, repeated samples, rather than new 

samples, in each group are re-used. 
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III. DESIGN EXAMPLE

In this section, a design example of a circularly polarized 

omnidirectional base station antenna is presented to illustrate 

the proposed DA-RF method. Both single-objective and multi-

objective optimizations are carried out.   
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Fig. 4.  Geometries of the circularly polarized omnidirectional base station 

antenna. 

A. Antenna Configuration

The configuration of the six-stage circularly polarized

omnidirectional base station antenna is presented in Fig. 4. It is 

composed of cascaded vertical strips and helical loops, fed by a 

tapered balun. The performance of the antenna is mainly limited 

by its AR bandwidth over all the horizontal angles, though it 

has been improved from the original design in [20] by replacing 

the center loops with parallel loops. The initial AR bandwidth 

of the based station antenna in Fig. 4 is 64 MHz when the four 

helical loops are in the same orientation as in the figure. Due to 

the asymmetrical structure of the antenna, the AR bandwidths 

at some certain horizontal angles are very small, which limit the 

overall bandwidth. With intuition, the open ends of the four 

loops are orientated uniformly to 0°, 90°, 180° and 270°, which 

enlarges the AR bandwidth to 112 MHz. We can assume that 

by arranging the orientations of the loops, an even larger AR 

bandwidth can be achieved. However, there are too many 

combinations among the rotations of the four loops. For 

example, if each loop has 36 possible rotation angles, there are 

364 combinations in total, which makes parameter sweeping 

impossible. Hence, the DA-RF method is employed. 

B. Single-objective optimization

The AR bandwidth is set as the optimization target. The

rotation angles of the four loops on the xoy plane are set as the 

input variables, i.e., ix = [
1 , 

2 , 
3 , 

4 ]. The definition of   

is denoted in Fig. 4, where 0° is along the x-axis. For each loop, 

a step width of 120° is chosen, resulting in 81 samples 

established by CST Microwave Studio [21]. The maximum AR 

bandwidth in the sample is 188 MHz, which corresponds to a 

relative bandwidth of 6.1%.  

The datasets are then sorted according to their AR bandwidth. 

The top 10% samples in the bandwidth are considered as good 

datasets, whereas the ones with bandwidths smaller than 100 

MHz are determined as bad datasets. The rest of the samples 

belong to the medium dataset. As a result of the classification, 

there are 8, 16 and 57 samples, respectively, in the good, 

medium and bad datasets, showing unbalanced samples with 

the ratio of around 1:2:8. According to the principle of the data 

augmentation in section II-B, an inversely proportional ratio of 

8:4:1 is used for stratified oversampling. After 7 times of 

oversampling, there are 64, 44 and 64 samples, respectively, in 

the good, medium and bad datasets, which are much more 

balanced. Subsequently, RF training is carried out based on 

those samples. 

(a)    (b) 

(c)    (d) 

(e)                                                        (f) 

Fig. 5.  Simulated performance of the circularly polarized omnidirectional base 

station antenna: (a) Reflection coefficients; (b) Best AR bandwidth in the 

samples; (c) Optimized AR bandwidth by KNN; (d) Optimized AR bandwidth 

by GPR; (e) Optimized AR bandwidth by conventional RF; (f) Optimized AR 

bandwidth by DA-RF. 

During the prediction, the step width in grid 1g is set to 10°. 

Following the procedure in Fig. 2, the optimization terminates 

after 24 iterations, providing the optimal AR bandwidth of 278 

MHz. The corresponding input parameter is 'ex = [230°, 170°,

200°, 110°]. The optimization takes 52 minutes in total. To 

show the advantage of the proposed method, similar ML 

algorithms, including the KNN, GPR and conventional RF, are 

employed to optimize the AR bandwidth using the same initial 

dataset. The optimized AR bandwidths at different horizontal 

angles are given in Fig. 5(b)-(f) with a step width of 45°, which 

basically indicates their omnidirectional performances. The 

results are summarized and compared in Table I. The reflection 

coefficients in Fig. 5(a) show that the impedance bandwidth is 

always larger than the AR bandwidth. In other words, the AR 

bandwidth is the bottleneck of the antenna performances.  

Among all the algorithms in Table I, KNN requires the least 

number of iterations. However, its optimized bandwidth is also 

the smallest, which is 44 MHz narrower than the one using the 

proposed method. Too many iterations are required for GPR, 

due to the small number of samples. In contrast, the proposed 

DA-RF method leads to the largest bandwidth with relatively 

fewer iterations and less execution time. The bandwidth has 
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been improved by 41% compared with the best one in the 

samples. 

TABLE I 

COMPARISON OF AR BANDWIDTH USING DIFFERENT METHODS 

Method 
Bandwidth 

(MHz) 

Relative 

Bandwidth 
Increment Iteration 

Execution 

Time (Min) 

KNN 235 7.0% 14.8% 17 36 
GPR 246 7.4% 21.3% 87 183 

RF 253 7.6% 24.6% 33 69 

DA-RF 279 8.6% 41.0% 24 52 

As a second example of single-objective optimization, the 

maximum gain at 3.3 GHz is optimized, which follows the 

similar procedures to the AR bandwidth  optimization. The 

results converge within 9 iterations, with an optimal design 

parameter 'ex  of [100°, 160°, 80°, 140°]. The optimized gains

are compared with the configuration with the maximum gain in 

the 81 samples in Table II. The maximum gain is improved to 

9 dBi, which is 0.8 dB higher than the original one. The average 

gain over the operating band is enlarged as well.  

C. Multi-objective optimization

For multi-objective optimization, the performances of the 81

initial samples, including the AR bandwidth, the realized gain 

and the pattern roundness, are investigated. All the three targets 

are taken into consideration using the composite metric 

illustrated in section II-B. According to (2), the weighting 

coefficients for the bandwidth, gain and roundness are 21.5, 

275.4 and -691.4, respectively.  

TABLE II 

COMPARISON OF OPTIMIZATION RESULTS  

Bandwidth 

(MHz) 

Relative 

Bandwidth 

Gain 

(dBi) 

Roundness 

(dB) 
S

Sample 

188 6.1% 7.32 2.59 3606 

96 2.3% 8.20 3.38 1650 

71 2.3% 6.68 1.03 1856 

Single- 
Objective  

278 8.6% 7.19 2.89 5210 

5 0.2% 9.00 4.19 -306 

68 2.1% 6.5 0.7 1903 

Multi-
Objective 

290 8.6% 7.24 2.52 5588 

The optimized results are provided in Table II. For each 

single optimization, the specific target has been greatly 

improved compared with the best one in the samples. For the 

multi-objective optimization, better results can be achieved. 

The optimal one with the largest S  provides an AR bandwidth 

of 290 MHz, a realized gain of 7.24 dBi and a roundness of 2.52 

dB. The antenna design parameters corresponding to the 

optimal S  are [250°, 160°, 180°, 140°], and the optimization 

converges within 32 iterations. The impedance bandwidth is 

always large enough to cover the AR bandwidth during the 

optimization. More balanced performances are achieved 

compared with the results of single-objective optimizations. 

Hence, the proposed method is effective and efficient in both 

single-objective and multi-objective optimizations of antennas 

parameters.  

IV. ANTENNA EXPERIMENTS

To fabricate a robust metallic antenna, the thickness of the 

aluminum was changed to 1.8 mm, which was then re-

optimized using the proposed DA-RF method. The largest AR 

bandwidth of 198 MHz was achieved when the input parameter 

'ex  is [230°, 130°, 180°, 80°], which improved by 31%

compared with the best one in the samples [22]. According to 

the optimized configuration, the antenna was fabricated, with 

the prototype given in Fig. 6(a). The vertical strips and helical 

loops, which were made of aluminum alloy, were fabricated 

with all-metal 3-D printing. The balun is printed on the 

substrate of F4B, with the permittivity of 2.2 and loss tangent 

of 0.001.  

The reflection coefficients of the antenna were measured 

using Ceyear-3672C vector network analyzer, with the results 

given in Fig. 7(a). The measured bandwidth was slightly larger 

than the simulated ones and moved to the lower frequencies, 

covering 3.13-3.48 GHz. The radiation performances of the 

proposed antenna in the operating band were measured in the 

SATIMO chamber, with the measurement setup given in Fig. 

6(b). As shown in Fig. 7(b), the measured AR agreed well with 

the simulated ones in general. Similar to the reflection 

coefficients, the operating frequencies for the circular 

polarization also moved towards the lower band, which could 

be attributed to the fabrication tolerance of the 3-D printing and 

the material difference between the aluminum in the simulation 

and the aluminum alloy in the fabrication. The overlapped 

bandwidth in the measurement was from 3.15 to 3.41 GHz, 

which was around 260 MHz. 

F4B PCB

All-metal 3D 

printed radiators

(a)                                                        (b) 
Fig. 6.  (a) Fabricated antenna prototype; (b) Measurement setup of the 

optimized antenna. 

(a)                                                        (b) 

Fig. 7. Measured and simulated results of the circularly polarized 
omnidirectional base station antenna: (a) Reflection coefficients; (b) AR values. 

V. CONCLUSION

In this letter, a DA-RF method is proposed to efficiently 

optimize the antenna parameters for specific targets. With DA, 

only a small number of samples are required for accurate 

prediction, which greatly reduces the simulation time. The 

method is applied to a circularly polarized base station antenna. 

As a result, the AR bandwidth has been improved from 188 

MHz to 278 MHz. The DA-RF method outperforms other 

similar ML-based methods in terms of better prediction results 

and fewer iterations. The method has also been validated in 

multi-objective applications.  
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