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Abstract— In a cellular system with distributed MU-MIMO,
an application of cluster-wise distributed MU-MIMO reduces
the computational complexity. However, both the intracell inter-
ference and the intercell interference are produced. Considering
the scalability of the system, in this letter, we propose a fully
decentralized interference coordination (IC) which jointly applies
the graph coloring algorithm (GCA) and the deep reinforcement
learning (DRL). Based on online training with consideration of
the time-varying wireless environment, our proposed joint IC
can adapt quickly to the changing environment. The simulation
reveals that our proposed joint IC can significantly improve the
capacity compared to the no IC case.

Index Terms— Interference coordination, deep reinforcement
learning, graph coloring algorithm, distributed MU-MIMO.

I. INTRODUCTION

IN 5G and beyond, massive MU-MIMO has been regarded
as a promising technique [1]. In particular, distributed

MU-MIMO [2], which exploits distributed antennas (DAs)
over the base station coverage area (or BS cell), can relieve the
problem of radio link blockage resulting from the utilization
of mm-wave band. In our previous research, we proposed
a cluster-wise distributed MU-MIMO [3], where users are
dynamically divided into non-overlapping sub-groups called
user-clusters (hereafter, simply called clusters) based on the
user location information. Then, a large-scale cell-based
MU-MIMO can be replaced with performing small-scale
cluster-based MU-MIMOs in parallel, so that the computa-
tional complexity required for signal processing can be greatly
reduced. However, in return, the problem of inter-cluster
interference is produced.

In a cellular system with cluster-wise distributed
MU-MIMO, the inter-cluster interference can be of two types:
intracell interference and intercell interference. Considering
of the system scalability, we want to mitigate these two types
of interference jointly in a fully decentralized manner, that is,
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each cell works independently with no information exchange
among each other. Under this decentralized scenario, the
intracell interference coordination (IC), which aims to
mitigate the interference caused by clusters from the same
cell, is relative straightforward because each base station (BS)
has all the information about its governing clusters. While
the intercell IC, which aims to mitigate the interference exists
between clusters that belong to different cells but face each
other along a cell boundary, is much more difficult to realize.

In recent years, with the rise of artificial intelligence (AI),
especially the reinforcement learning (RL), some new pro-
gresses for intercell IC in cellular system have emerged.
As early as in 2015, Simsek et al. [4] have tried to apply the
Q-learning algorithm to solve the intercell IC among macro-
cells and picocells in a Heterogeneous network (HetNet).
In order to overcome the memory and computational limitation
problems that come with tabular-based Q-learning algorithm,
the authors proposed to store the probability distribution over
all actions instead of the state-action combination in Q table.

In more recent years, with the development of deep learn-
ing technology, deep reinforcement learning (DRL) embed-
ded with updatable neural networks has been able to solve
large-scale problems more efficiently than tabular-based RL.
In 2020, in order to solve the intercell IC problem in an
ultra-dense network with small-cell BSs deployed in a res-
idential area, Wang et al. [5] applied the actor-critic (AC)
algorithm to minimize each BS’s transmit power so as to
reduce the intercell interference to the user equipments (UEs)
of the surrounding BSs. In order to realize a fully decentral-
ized scheme without information exchange between BSs, the
Mean Field Theory is employed together with AC algorithm.
Similarly, in 2021, in order to solve the intercell IC problem
in HetNets, Yan et al. [6] applied the Double DQN to schedule
sub-channels to individual users. In order to improve the
robustness of Double DQN, Wasserstein Generative Adver-
sarial Networks (W-GANs) is incorporated together.

Inspired by the above-mentioned contributions, we also
want to explore the application of DRL for intercell IC in
the cellular system with cluster-wise distributed MU-MIMO.
However, the intercell IC problem we face is even more chal-
lenging than the above-mentioned scenarios, which requires
the consideration of intracell IC constraints while doing inter-
cell IC. In our previous research [7], we have explored the
application of graph coloring algorithm (GCA) for intracell
IC. The GCA-based intracell IC is able to divide the entire
available bandwidth into several sub-bands, and assign the
different sub-bands to neighboring clusters inside each cell.
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Because the neighboring clusters do not share the same sub-
bands, the serious intracell interference can be successfully
mitigated. However, since each cell applies the GCA-based
intracell IC independently, and the coloring result will not
be shared with the surrounding cells, the color collision may
happen at clusters facing each other along the cell boundary,
thus the intercell interference is unavoidable. Besides that,
in cellular system with cluster-wise distributed MU-MIMO,
the clustering results will change according to the changes in
the user’s location, and the changes of the clustering results
will directly lead to the changes in the GCA results. Therefore,
in a dynamic environment considering the users’ mobility,
where the color collision occurs and among which color it
occurs is time-varying and totally unpredictable. Under this
scenario, the DRL which springs up recently overwhelms the
traditional methods in both the flexibility and adaptability
in dynamic environment. By interacting with the unknown
environment, the DRL is able to figure out the solution on
its own with limited number of trial and errors. Therefore,
we try to apply the Deep Q network (DQN) from DRL to
dynamically eliminate the color collision, and the correspond-
ing intercell interference, by self-learning with only locally
observed information.

In this letter, we propose a joint IC solution, aiming at
maximizing the capacity of a cellular system with cluster-wise
distributed MU-MIMO in a fully decentralized manner by
combining the GCA and the DRL. The GCA-based intra-
cell IC is applied first in each cell independently to allo-
cate different sub-bands to the neighboring clusters. Then,
under the constraint of the existing GCA results, based on
only the locally observed information, the selected cells turn
on the DRL-based intercell IC to dynamically choose one
color-adaptation scheme to adjust the existing coloring result
in order to minimize the occurrence of the intercell interfer-
ence from surrounding cells.

To ensure that the DQN can adapt quickly to the changing
environment, the DQN needs to be trained with the real-time
data obtained from interaction with the dynamic environment.
Therefore, DQN is trained online instead of offline in this
letter, which guarantees that our proposed joint IC has the
ability to adapt to the dynamic environment and react in real
time.

The remainder of this letter is organized as follows.
Section II provides the system model and the problem for-
mulation. In Section III, the proposed joint IC based on GCA
and DRL is described. The simulation analysis is conducted
in Section IV, and Section V concludes this letter.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The structure of a cellular system with cluster-wise dis-
tributed MU-MIMO is illustrated in Fig.1. Our proposed
joint IC is planned to be applied based on O-RAN architec-
ture [8], in which the near-real-time (near-RT) radio access
network intelligent controllers (RICs) with the xAPPs, and the
non-RT RIC with rApps are introduced. The near-RT RICs
are designed to be the specific executor to control one or
several cells, while the non-RT RIC is to provide guidance for

Fig. 1. System model of cellular system with cluster-wise distributed
MU-MIMO in O-RAN architecture.

the near-RT RICs with its global optimization and monitoring
capability.

In our proposed joint IC, the entire bandwidth is divided
into M sub-bands and one of the sub-bands is assigned to
each cluster. The set of entire clusters and the set of clusters
which are assigned to the mth sub-band in the service area
are denoted by κ and κm, m ∈ {1, · · · , M}, respectively.
In this letter, the numbers of users, DAs, and clusters in κ
are denoted by NU , NA, and NC , respectively. While those in
the κm are denoted by Nm

U , Nm
A , and Nm

C , respectively. The
ith user in the kth cluster in κm is denoted by um

i,k. Below,
the matrices are represented as bold upper-case letters and the
superscripts (i, :) and (:, i) represent the ith row and column
vectors of the matrix, respectively. Assuming the zero-forcing
(ZF) based cluster-wise MU-MIMO to eliminate the multi-user
interference within each cluster and by approximating the sum
of inter-cluster interference and noise as a complex Gaussian
process, the received signal-to-interference plus noise ratio
(SINR) of user um

i,k is given as

SINRum
i,k

=
Pk

∥∥∥H(i,:)
k W(:,i)

k

∥∥∥2

Nm
C∑

l=1,l ̸=k

Pl

Nm
U,l∑

j=1

∥∥∥H(j,:)
k,l W(:,j)

l

∥∥∥2

+ 1

, (1)

where Wk and Wl are the ZF precoder matrices, Hk and
Hk,l are respectively the channel matrix of kth cluster and the
interference channel matrix between users in the kth cluster
and DAs in the lth cluster in κm. Nm

U,k or l denotes the
number of users in the kth or lth cluster in κm. Pk and Pl

are the transmit powers allocated to the kth and lth clusters,
respectively and can be expressed as

Pk or l =
Nm

U,k or lP

∥Wk or l∥2F
, (2)

where P is the transmit power-to-noise ratio equal to all NU

users. Using the SINR expression in Eq. (1), the user capacity
of user um

i,k can be expressed as

Cum
i,k

=
1
M

log2(1 + SINRum
i,k

). (3)

Assigning different sub-bands to different clusters is equiv-
alent to dividing the clusters into different cluster subsets
{κm; m ∈ {1, · · · , M}}. Therefore, our goal is to select opti-
mal cluster subset κm ⊆ κ which maximizes the sum capacity.

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on September 17,2024 at 02:41:56 UTC from IEEE Xplore.  Restrictions apply. 



GE et al.: LEARNING BASED ON GRAPH: A JOINT IC FOR CLUSTER-WISE DISTRIBUTED MU-MIMO 873

We set our optimization objective as follows:

max
κm⊆κ

M∑
m=1

Cm,

s.t. ∀m ∈M,⋃
m∈M

κm = κ, and κn ∩ κm = ,∀n ̸= m, (4)

where

Cm =
Nm

C∑
k=1

Nm
U,k∑

i=1

Cum
i,k

(5)

III. JOINT IC BASED ON GCA AND DRL

A. The Framework of Joint IC

The framework of our proposed joint IC is illustrated in
Fig.2. The clustering, together with the joint IC (including the
GCA-based intracell IC and the DRL-based intercell IC) are
designed to be applied as the xAPPs on each near-RT RICs,
respectively. During the communication, each near-RT RIC
updates the clustering results based on the users’ movement
and associate the DAs according to the principle of prox-
imity. The updating of the clustering results will trigger the
GCA-based intracell IC (described in Sect. III-B) to allocate
the different sub-bands to the neighboring clusters to mitigate
the intracell interference. After that, the non-RT RIC with its
broader system-level view will send guidance information to
the near-RT RICs to turn on some of the non-adjacent cells’
DRL-based intercell IC (described in Sect. III-C). Then, the
selected cells will work independently to mitigate the intercell
interference with only the locally observed information.

During the implementation process of the DRL-based inter-
cell IC, each near-RT RIC first estimates the current state
s(t) in the timeslot t , which is used as input to the DQN
to derive the estimated value of each color-adaptation actions.
The action a(t) with the highest value will be selected, which
as a consequence, will change the existing coloring results to
minimize the occurrence of color collision near cell boundary.
The selected a(t) actually serves the next timeslot t + 1 ,
therefore s(t+1) is estimated again and the reward r(t+1) is
defined by the near-RT RIC to evaluate the merit of the
selected a(t) by comparing the change in s(t) and s(t+1).

Because the online training strategy is adopted in this letter,
we assume that the wireless environment at s(t) and s(t+1) are
different, with future information completely unknown. Unlike
the commonly used offline training [9], [10], online training
can ensure that the parameters of DQN been constantly
updated during the real communication process and thus is
able to follow the changing environment and provide real-time
solutions. As a result, our proposed joint IC based on online
training can naturally explore the unknown environment and
find solutions with well adaptability to dynamic environment.

To enable efficient online training, in this letter, we assume
that each cell is equipped with a fixed size of mem-
ory pool, in which the state transition sequence ∆(t) =
(s(t), a(t), s(t+1), r(t+1)) that happened in latest timeslots are
stored. During the online training process, a batch of data D
is randomly selected from the memory pool to train the DQN.

Fig. 2. The framework of joint IC.

The application of memory replay and batch selection [11]
can effectively eliminate the correlation between training data
and improve the data utilization. Meanwhile, it ensures that
the training dataset for online training is up-to-date and also,
it greatly reduces the size of dataset during each training
episode so as to reduce the training overhead.

As a preliminary study of the application of DRL for IC
under O-RAN architecture, in this letter we only focus on the
near-RT RIC part, that is how to jointly apply the GCA and
DRL to mitigate both the intracell interference and the intercell
interference, while leave the details about the higher-level
control from the non-RT RIC for future researches.

B. GCA-Based Intracell IC

In our previous study [7], we explored about how to model
the problem of IC as a graph and apply GCA from graph
theory to optimize the sub-bands allocation in order to mitigate
intracell interference. We revealed that there is a tradeoff
between the bandwidth segmentation and the interference
mitigation and that the maximum capacity is obtained when
M =4. We also proposed an GCA in which the value of M
is controllable. In this letter, we apply the GCA of [7] for
intracell IC.

C. DRL-Based Intercell IC

Since we assume a fully decentralized framework, we sup-
pose each BS is a single agent, and the IC problem in each cell
can be modeled as a Markov decision process (MDP), which
can be expressed as a triplet {S, A,R}, where S represents
the state space, A represents the action space, and R is the
reward function. They are described below.
• State space: At timeslot t, we define the states for

each BS agent as the instantaneous sum capacities of
the clusters those belong to κm in each cell based on
the current coloring result, which is noted as s(t) =
[C(t)

0 , C
(t)
1 , · · · , C(t)

M−1].
• Action space: The action that each BS can take is

designed as A = {1, 2, · · · , M}. Let the coloring result
for the kth cluster after GCA be gk ∈ {0, 1, · · · , M − 1}.
In timeslot t + 1, after the action a(t) is chosen by the
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BS, the coloring result of each cluster is adjusted based
on the modulo operation as

g
(t+1)
k =

(
g
(t)
k + a(t)

)
mod M (6)

As for the action selection policy (π), we adopt the well-
known ε-greedy policy [11] to balance the exploration
and the exploitation.

• Reward function: The reward function is defined as the
difference in the change of sum capacity after taking a(t)

to change the coloring result and is given as

r(t+1) =
M−1∑
m=0

C(t+1)
m −

M−1∑
m=0

C(t)
m (7)

The DQN used in this letter is an extension of the basic
Q-learning algorithm [11], which applies the Bellman equation
to update the Q value with the learning rate α as

Q(s(t), a(t))← Q(s(t), a(t))
+α[r(t+1) + γmax

a∈A
Q′(s(t+1), a)−Q(s(t), a(t))]. (8)

Since the environment are changing in time, the state
space S becomes infinite. Therefore, the DQN, in which
the tabular-based storage been replaced by a neural network,
is our better choice. The computational complexity of DQN
during implementation process only depends on the com-

plexity of matrix multiplication, therefore it is O(
L∑

l=1

nlnl−1)

[10], in which L = {0, · · · , L} represent the set of layers,
l = 0 and l = L denote the input layer and output layer
respectively, nl denote the number of neurons of each layer l ∈
L . In order to better train the DQN, we adopt the semi-fixed
target network method [11], in which one local DQN and one
semi-fixed DQN coexist. The local DQN updates its weight θ
during the online training and calculates the estimated Q value
Q(s(t), a(t), θ) (denoted by Q-estimated). While the semi-fixed
DQN, with weight θ′ been copied from θ every T ∗ timeslots,
is to calculate the target Q value Q(s(t+1), a(t+1), θ′) (denoted
by Q-target). The cooperation of semi-fixed DQN and local
DQN can improve the convergence during the DQN training.

In DQN, the Q-target and Q-estimated can be obtained by
local DQN and semi-fixed DQN as follows

Q-target = r(t+1) + γmax
a∈A

Q(s(t+1), a, θ′) (9)

Q-estimated = Q(s(t), a(t), θ) (10)

Therefore, the loss is defined as

loss(θ) =
∑
D

(Q-target− Q-estimated)
2

(11)

The DQN training process is to minimize the loss by
updating the value of θ.

IV. SIMULATION RESULTS

We consider a normalized area of 5 × 5 over which
25 cells are constructed as shown in Fig.3(a). Because the
user movement in a small range will not affect the clustering
results, in this letter, we adopted the quasi-static simulation.

TABLE I
PARAMETER SETTINGS

Fig. 3. An example of sub-band allocation results by joint IC.

The users’ locations are generated randomly for 100 times, and
for each generation of user locations, the channels are realized
as follows. The distance dependent pathlosses are computed
based on the generated user locations. The log-normally dis-
tributed shadowing losses are generated 10 times for each
generation of user locations. The Rayleigh fading gains are
generated 10 times for each generation of shadowing losses.
In this letter, we suppose each cell applies the GCA-based
intracell IC, while the cell which locates in the center area
and receives the intercell interference from every direction is
selected as the cell of interest and turns on the DRL-based
intercell IC. In this way, by comparing the performance of the
no IC case, only GCA case and the GCA+DRL case in the
cell of interest, the effectiveness of GCA-based intracell IC
and DRL-based intercell IC of our proposed joint IC can be
evaluated, respectively. Other detailed parameters are shown
in Table I.

Figures 3(b) and (c) illustrate the sub-bands allocation
results at timeslot t = 0 and 100. At the beginning (t = 0)
when only GCA-based intracell IC is applied, the neighboring
clusters inside each cell have been allocated different sub-
bands, so that the intracell interference can be mitigated. But
a lot of color collisions are seen along the cell boundary,
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Fig. 4. The CDF of sum capacity.

Fig. 5. The convergence of DQN.

thereby causing the intercell interference. While when t =
100, due to the implementation of DRL-based intercell IC,
the BSs can adjust the coloring result and thus, minimize the
intercell interference.

In Fig.4, we plot the cumulative distribution function (CDF)
of the sum capacity to evaluate our proposed joint IC when
8 clusters are formed in each cell. When GCA-based intracell
IC is applied alone (indicated as red line), the intracell
interference can be mitigated effectively, thus increasing the
capacity at CDF=50% by 33% compared to the no IC case
(indicated as the black line). While for the joint IC, which
adds DRL-based intercell IC on top of the GCA-based intracell
IC, can mitigate both the intercell and intracell interferences,
thus can further increases the sum capacity by 18% (by a
total of 51% compared to the no IC case). Compared with
the well-known fractional frequency reuse scheme (FFR) [12],
which can only achieve 5% improvement, our proposed joint
IC has significant advantages.

To achieve the adaptability of the DRL-based intercell IC to
the dynamic environment via online training, the convergence
speed of DQN is of vital importance. Therefore in Fig.5,
we illustrate the sum capacity variation during the beginning
100 timeslots for a new updating of clusters when DRL-based
intercell IC is applied. For comparison, the only GCA case
and the global optimal case are also provided. (Note that
the global optimal solution is obtained by applying the GCA
in the non-RT RIC in a fully centralized manner.) It is
clearly seen from Fig. 5 that after a dozen of timeslots for
training, the DQN can adapt to the environment, thus providing
a sub-optimal solution which has higher capacity than the

IC with GCA only. The convergence speed of DQN can
accommodate the requirements of online training, therefore,
convinced that our proposed joint IC based on online training
can quickly keep up with the changes in the dynamic environ-
ment.

V. CONCLUSION

In this letter, we proposed a joint interference coordination
(IC) which combines the advantages of graph coloring algo-
rithm (GCA) and the deep reinforcement learning (DRL) so as
to realize the fully decentralized intracell IC and intercell IC
in a cellular system with cluster-wise distributed MU-MIMO.
The GCA is firstly applied to mitigate the intracell interference
which is produced between user-clusters inside each cell, then
DRL is applied based on only locally observed information
to adjust the existing coloring result to mitigate the intercell
interference from user-clusters in surrounding cells. Based on
online training with consideration of the time-varying wireless
environment, our proposed joint IC can adapt quickly to
the changing environment. The simulation confirmed that our
proposed joint IC can approximates the optimal solution and
significantly improve the sum capacity compared to the no IC
case and FFR.

In the letter, the perfect CSI is assumed. The capacity
improvement achievable with our proposed joint IC under the
imperfect CSI is left as our future study.
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