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Abstract— A class of millimeter-wave E-plane waveguide band-
pass filters (BPFs) based on spoof surface plasmon polari-
tons (SSPPs) have been presented in this article. Three kinds of
SSPPs, with different patterns coated on the dielectric substrate,
are inserted into the E-plane of WR-10 standard rectangular
waveguide for the design of BPFs. To clarify the filtering
characteristics of the proposed BPFs, the dispersive properties
of different SSPP unit cells are investigated and discussed.
The electromagnetic simulation results demonstrate that the
bandwidths and center frequencies of the proposed E-plane
waveguide BPFs can be flexibly adjusted by controlling the
asymptotic frequencies of SSPP unit cells. For verifying the design
feasibility, these three E-plane waveguide BPFs are fabricated
and measured. Good agreement between measurements and
simulations indicates that the proposed idea will be a good
candidate for the BPF design with low insertion loss and flexible
adjustment of center frequency and bandwidth.

Index Terms— Bandpass filter (BPF), dispersive characteris-
tics, E-plane waveguide, millimeter wave, spoof surface plasmon
polaritons (SSPPs).

I. INTRODUCTION

IN THE past few decades, the unavoidable tension of fre-
quency spectrum resources increases the working frequency

of a wireless communication system from low-frequency band
to millimeter-wave band. The millimeter-wave bands, e.g.,
W-band, with merits of wide bandwidth, large capacity, and
high resolution, are attracting more and more attention for
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the applications of millimeter-wave imaging, automotive anti-
collision radar [1], [2], [3], and so on. As one of the
key components in the wireless communication systems,
a millimeter-wave bandpass filter (BPF) with high perfor-
mance is extensively required to meet the industrial appli-
cation. However, few design technologies of millimeter-wave
BPFs can successfully balance the fabrication cost and fil-
tering performance, such as low in-band loss and high
selectivity.

So far, numerous millimeter-wave BPFs based on vari-
ous technologies have been reported [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15]. Among them, the
SiGe/GaAs/silicon-based millimeter-wave BPFs [4], [5], [6],
[7], [8] have undeniably small sizes, which can be naturally
integrated with on-chip radio frequency circuits and front ends
for the miniaturization of wireless communication systems.
Especially, the commercial silicon-based CMOS technologies
are very mature, resulting in massive productions of critical
devices, including light-emitting devices [16], [17], [18], [19].
However, the practical applications of semiconductor-based
BPFs generally suffer from the issues of high fabrication cost
and large insertion losses. On the other hand, the substrate
integrated waveguide (SIW) technology was employed for
the design of millimeter-wave BPFs [9], [10], [11], [12],
which could be fabricated on commercial single-layer or mul-
tilayer printed circuit board (PCB) with low cost. Moreover,
some millimeter-wave BPFs based on low-temperature cofired
ceramic (LTCC) technology were reported to realize the minia-
turized sizes [13], [14], [15]. Unfortunately, the multilayer
filter structure design was complicated, and the fabrication cost
was also relatively high.

The E-plane waveguide BPF, as one of the feasible filter
solutions for the millimeter-wave transmitter/receiver systems,
has been further explored recently [20], [21], [22], due to
the flexibly adjusted ability through changing the resonant
topology on the inserted substrate. For instance, a W-band
E-plane waveguide BPF is proposed in [20], whose trans-
mission zeros (TZs) at upper and lower stopbands can be
controlled by a meander ring resonator and two metallic
strips. In [21], the bandwidth and center frequency of E-plane
waveguide BPF can be tuned by adjusting the geometric
parameters of strip lines and L-shaped resonators.
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Fig. 1. Millimeter-wave E-plane waveguide BPF based on uniform SSPPs.

Surface plasmon polaritons (SPPs) are highly confined
surface waves propagating along the interface between the
metal and the dielectric at optical frequency [23]. As a kind
of periodic metamaterials supporting the SPPs-like surface
wave at microwave band [24], spoof SPPs (SSPPs) possess the
advantages of strong confinement ability of electromagnetic
wave and excellent low-pass transmission characteristics [25].
Therefore, the SSPPs have been applied in many designs of
planar microwave and millimeter-wave devices [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35]. To the best of the
authors’ knowledge, however, very little exploration has been
done on the design of millimeter-wave E-plane waveguide
BPF based on SSPPs. In this article, based on our previous
work [36], three different but very simple structures of SSPPs
are presented and applied in the millimeter-wave E-plane
waveguide BPFs. By controlling the asymptotic frequencies of
SSPPs, the bandwidths and center frequencies of millimeter-
wave E-plane waveguide BPFs can be flexibly adjusted. Good
agreement between simulated and measured results of the
fabricated examples validates the design feasibility.

II. CHARACTERISTICS OF E-PLANE WAVEGUIDE

BPF BASED ON SSPPS

A millimeter-wave E-plane waveguide BPF based on uni-
form SSPPs is proposed in Fig. 1, where the SSPPs metallic
structures are coated on an FSD220G substrate (thickness
h = 0.127 mm, relative permittivity εr = 2.2, and loss
tangent δ = 0.009). As illustrated in Fig. 1, a pair of gradient
transition parts from rectangular waveguide to SSPPs are
designed for the excitation of SSPP mode in millimeter-wave
E-plane waveguide BPF. All dimensions of the proposed BPF
are tabulated in Table I.

The dispersive characteristics of the uniform SSPP unit
cell shown in Fig. 2(a) (inset) are investigated and dis-
cussed. Fig. 2(a)–(c) displays the dispersion curves of uni-
form SSPP unit cell with different values of la , p, and wa,
respectively. It can be found that the variations of la and
p have more obvious effects on the change of asymptotic

TABLE I

DIMENSIONS OF MILLIMETER-WAVE E-PLANE
WAVEGUIDE BPF (UNIT: mm)

Fig. 2. Dispersion curves of uniform SSPP unit cell with different values of
(a) la , (b) p, and (c) wa .

frequency than that of wa . The asymptotic frequency can be
effectively adjusted from 142 to 103 GHz with an increase
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of la from 0.77 to 1.07 mm in Fig. 2(a). As p increases
from 0.25 to 1.15 mm in Fig. 2(b), the asymptotic frequency
is decreased from 103 to 78 GHz. However, larger p will
obviously decrease the slopes of dispersion curves near the
asymptotic frequency points, which implies that the uniform
SSPPs will have weaker confinement ability of electric field,
and the design of waveguide BPF with sharp roll-off skirt
will be difficult. Besides, the increase of p will unavoidably
extend the size of SSPP waveguide in the x-direction, which
is not friendly for the compact design of SSPP waveguide.
Therefore, the parameter la seems to be a better option for the
design and adjustment of millimeter-wave E-plane waveguide
BPF than the other two parameters.

To achieve the mode and impedance matching for the pro-
posed BPF, a kind of gradient transition parts at the
input–output (I/O) ports is designed on SSPP waveguide. The
y-directional lengths of metallic strips of gradient transition
parts are set as

lan = 0.146(n − 1) + 0.28, n = 1, 2, . . . , 6 (1)

where the unit is mm. Under the mathematical conditions that
λ � p and λ � l (λ denotes the operating wavelength, and l
represents the length of metallic strip in the y-direction), the
wavenumber kx can be expressed as the following [24], [25]:

kx = ko

√
1 + (p − wa)

2

(p)2 tan2(kol/2) (2)

where ko and kx denote the wavenumbers in free space
and SSPP waveguide, respectively. The structures of E-plane
waveguide BPFs with and without gradient transition parts are
presented in Fig. 3(a) (inset). Fig. 3(a) shows the calculated
wavenumber kx at 80 GHz, which is the center frequency
of the proposed BPF. For the case of BPF without gradi-
ent transition parts, it can be observed that a mismatch of
wavenumber exists between the WR-10 rectangular waveguide
and the SSPP waveguide, in which the wavenumber kx jumped
from ko to 1.25ko directly. On the contrary, the wavenumber
kx can be gradually changed from ko to 1.25ko for the BPF
with gradient transition parts.

For demonstrating the function of gradient transition parts,
the S-parameters of BPF with and without gradient transition
parts are simulated, respectively, as illustrated in Fig. 3(b).
If the gradient transition parts are not applied, the value of |S11|
of the proposed BPF is close to −3 dB in the whole passband,
which means nearly half power of the electromagnetic waves is
reflected. In contrast, a high-efficiency transmission within the
passband can be achieved for the BPF with gradient transition
parts, in which |S11| is lower than −10 dB, and |S21| is flat
from 63 to 103 GHz.

To observe the mode conversion of electromagnetic waves
of gradient transition parts, the electric field distributions of
the proposed millimeter-wave E-plane waveguide BPF are
simulated at 80 GHz. The top view of electric field distribution
of the proposed BPF is displayed in Fig. 4(a). The electric
field distributions of y-o-z cross section at the outside, fourth
metallic strip, and eighth metallic strip of SSPP waveguide are
presented in Fig. 4(b)–(d), respectively. Moreover, the electric

Fig. 3. (a) Wavenumber kx of SSPP waveguide with and without gradient
transition parts and (b) simulated S-parameters of E-plane waveguide BPF
based on uniform SSPPs with and without gradient transition parts.

field intensities of Fig. 4(c) and (d) are displayed in Fig. 4(e)
and (f) for easier observation. The distribution of electric field
|E | of Fig. 4(e) and (f) along the y-axis is quantified for clearer
comparisons. The observation heights of electric field |E | are
set as z = 0.05 mm and z = 0.5 mm, and the quantified results
are displayed in Fig. 5.

As shown in Fig. 4(b)–(d), the electromagnetic waves prop-
agate with the TE10 mode along WR-10 rectangular waveguide
until they arrive at the outmost metallic strip of the proposed
BPF. The color of electric field distributions near the surface of
metallic strips in Fig. 4(c) is deeper than that in Fig. 4(d). The
areas far away from the eighth metallic strip have less electric
field distributions than that of the fourth metallic strip in
y-o-z cross section, which is more obvious in Fig. 4(e) and (f).
In addition, the magnitude value of electric field |E | of the
eighth metallic strip is larger than that of the fourth metallic
strip for the case of z = 0.05 mm in Fig. 5(a). In contrast,
when the observation height is set as z = 0.5 mm in Fig. 5(b),
the eighth metallic strip has weaker electric field |E | than that
of the fourth metallic strip, which is because more electric field
is concentrated on the surface of the eighth metallic strip.

Therefore, the propagation of electromagnetic waves can be
confined near the surface of SSPP waveguide, and the elec-
tromagnetic waves can be smoothly transferred from the TE10

mode to surface-wave mode through the proposed gradient
transition parts.
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Fig. 4. Electric field distribution of (a) top view of the proposed BPF. Electric
field distributions of y-o-z cross section at three different locations, including
(b) outside of SSPP waveguide, (c) fourth metallic strip, and (d) eighth
metallic strip. Electric field intensities of y-o-z cross section at (e) fourth
metallic strip and (f) eighth metallic strip.

Fig. 6(a) displays the simulated S-parameters of the
WR-10 waveguide and the proposed millimeter-wave E-plane
waveguide BPF based on uniform SSPPs in Ansys HFSS.
It can be observed that the simulated 3-dB bandwidth of the
proposed BPF is from 63 to 103 GHz with a minimum inser-
tion loss of 0.55 dB at the center frequency of 83 GHz. Since
the variation of lower cutoff frequency of the proposed BPF is
limited to the fixed WR-10 waveguide, the adjustment of filter-
ing performance mainly depends on the change of upper cutoff
frequency, i.e., asymptotic frequency of the uniform SSPP
unit cell. As la increases from 1.01 to 1.07 mm, the upper
cutoff frequency will be reduced from 105 to 103 GHz for the
proposed BPF, as shown in Fig. 6(b). Besides, the proposed
BPF has a wide out-of-band rejection, whose bandwidths of
lower and upper stopbands are 62 and 53 GHz (referring
to −10 dB), respectively.

III. E-PLANE WAVEGUIDE BPFS BASED ON

DIFFERENT SSPPS STRUCTURES

Although the upper cutoff frequency of the proposed BPF
can be widely adjusted from 103 to 142 GHz with a variation
of la , the maximum available value of la for the uniform
SSPP unit cell is only 1.07 mm limited by the fabrication
resolution and the fixed size (1.27 mm) of WR-10 rectangular
waveguide in the y-direction, which makes the minimum upper
cutoff frequency of proposed BPF merely as low as 103 GHz.
Therefore, it is impossible to further decrease the upper
cutoff frequency of the proposed millimeter-wave E-plane
waveguide BPF based on uniform SSPPs. To solve the issue,

Fig. 5. Distribution of electric field |E| of the fourth and eight metallic strips
along the y-axis at (a) z = 0.05 mm and (b) z = 0.5 mm.

two different millimeter-wave E-plane waveguide BPFs based
on stepped-impedance and grounded SSPPs are proposed and
analyzed in this section, respectively.

A. Millimeter-Wave E-Plane Waveguide BPF Based on
Stepped-Impedance SSPPs

The structure of the stepped-impedance SSPP unit cell and
its initial dimensions are presented in Fig. 7. The dispersion
curves of stepped-impedance SSPP unit cell with different
parameters wb1 and ln are simulated in CST microwave studio
software. Fig. 8 shows the dispersion curves of stepped-
impedance SSPP unit cell with different values of wb1.
It can be observed that the increase of wb1 from 0.1 to
0.16 mm will effectively decrease the asymptotic frequency
from 103 to 93 GHz. Table II presents the relationships
between the asymptotic frequencies and the lengths of ln .
The asymptotic frequency of the proposed stepped-impedance
SSPP unit cell drops to 96 GHz first as the decrease of ln and
then rises again. Both variations of wb1 and ln do not increase
the extra size of SSPP waveguide.

Due to a wider adjustment range that can be effectively
achieved by changing wb1 than that of ln , parameter wb1

is mainly used for the design and optimization of E-plane
waveguide BPF. The structure of the proposed millimeter-wave
E-plane waveguide BPF based on stepped-impedance SSPPs
is displayed in Fig. 9, and its dimensions are tabulated in
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Fig. 6. (a) Simulated S-parameters of WR-10 waveguide and the pro-
posed millimeter-wave E-plane waveguide BPF based on uniform SSPPs and
(b) magnitude of |S21| with a variation of la for E-plane waveguide BPF based
on uniform SSPP unit cell.

Fig. 7. Structural comparisons of uniform and stepped-impedance SSPP unit
cells.

Table III. For this case, the y-directional lengths of metallic
strips of gradient transition parts are set as follows:

lbn = 0.166(n − 1) + 0.2, n = 1, 2, . . . , 6. (3)

The S-parameters of the proposed millimeter-wave E-plane
waveguide BPF based on stepped-impedance SSPPs are sim-
ulated in Fig. 10(a). It has a flat passband from 65 to 95 GHz
with a 3-dB fractional bandwidth of 37.5%, and its simulated
center frequency is at 80 GHz with a minimum insertion
loss of 0.38 dB. Meanwhile, the proposed BPF has a wide
out-of-band rejection (referring to −10 dB), whose simulated

Fig. 8. Dispersion curves of stepped-impedance SSPP unit cell with different
values of wb1.

TABLE II

RELATIONSHIPS BETWEEN ASYMPTOTIC FREQUENCIES

AND LENGTHS OF ln

Fig. 9. Millimeter-wave E-plane waveguide BPF based on stepped-impedance
SSPPs.

bandwidths of upper and lower stopbands are both 61 GHz.
The simulated |S21| curves of the proposed BPF with different
values of wb1 are presented in Fig. 10(b). It can be clearly
noticed that the increase of wb1 will decrease the upper
cutoff frequency from 103 to 93 GHz for the proposed BPF,
which agrees well with the relationships between asymptotic
frequencies and parameter wb1 in Fig. 8.

For demonstration, the transmission characteristics and elec-
tric field distributions of the proposed BPF are shown in
Fig. 11. Three operating frequency points of the electric field
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TABLE III

DIMENSIONS OF MILLIMETER-WAVE E-PLANE
WAVEGUIDE BPF (UNIT: mm)

Fig. 10. (a) Simulated S-parameters of the proposed millimeter-wave E-plane
waveguide BPF based on stepped-impedance SSPPs and (b) its simulated |S21|
with different values of wb1.

distributions are at 30, 80, and 120 GHz, which are selected at
the below cutoff frequency of WR-10 rectangular waveguide,
within the passband of the proposed BPF and above asymp-
totic frequency of stepped-impedance SSPP unit cell, respec-
tively. When the proposed BPF works at 30 GHz, only few
electromagnetic waves distribute on the surface of metallic
strips and cannot be transmitted to the output port of the
proposed BPF in Fig. 11(a), which is caused by the high-pass
characteristics of WR-10 rectangular waveguide. Within the
passband, the electromagnetic wave can propagate through
the SSPP waveguide and realized effective mode conversion,
as shown in Fig. 11(b). Due to the observation frequency

Fig. 11. Electric field distributions of the proposed millimeter-wave E-plane
waveguide BPF based on stepped-impedance SSPPs at (a) 30, (b) 80, and
(c) 120 GHz.

point 120 GHz located far away from the fundamental mode
of stepped-impedance SSPPs, the electromagnetic wave fed
by WR-10 rectangular waveguide gradually disappears and
cannot propagate through the SSPP waveguide, as illustrated
in Fig. 11(c).

B. Millimeter-Wave E-Plane Waveguide BPF Based
on Grounded SSPPs

In this section, a grounded SSPP unit cell, which consists
of two symmetrically metallic strips grounded to the walls of
the rectangular waveguide, is proposed, as shown in Fig. 12(a)
(inset). The initial dimensions of the proposed SSPP unit cell
are lc = 0.585 mm, wc = 0.1 mm, and p = 0.235 mm.
To apply the proposed SSPP unit cell for the design of
millimeter-wave E-plane waveguide BPF, the dispersive char-
acteristics of grounded SSPP unit cell are also investigated
first. The dispersion curves with different parameters of lc,
wc, and p are simulated.

As shown in Fig. 12, the variation of lc has more obvious
influence on the distribution of asymptotic frequency than that
of other two parameters for the proposed SSPP unit cell. The
asymptotic frequency can be adjusted from 103 to 93 GHz,
as lc is tuned from 0.540 to 0.585 mm. The variation of lc does
not increase the occupied area of SSPP waveguide. Besides,
the asymptotic frequencies of dispersion curves in Fig. 12(b)
are almost unchanged near 94.0 GHz with the change of wc

from 0.02 to 0.14 mm. The maximum feasible value of wc

is only 0.135 mm for the limitation of fabricated resolution
and the fixed size in the y-direction of WR-10 rectangular
waveguide, which unavoidably limits the adjustment ability
of grounded SSPP unit cell. Therefore, if the proposed SSPP
unit cell is applied for the design of millimeter-wave E-plane
waveguide BPF, the parameter lc can be a proper option for
the adjustment of upper cutoff frequency of BPF.

Based on the aforementioned analysis, a millimeter-wave
E-plane waveguide BPF based on grounded SSPPs is pro-
posed. Its layout along with the top view of the inserted
substrate is shown in Fig. 13. All dimensions of the proposed
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Fig. 12. Dispersion curves of the grounded SSPP unit cell with different
values of (a) lc , (b) wc, and (c) p.

BPF are tabulated in Table IV. For this case, the y-directional
lengths of metallic strips of gradient transition parts are set as
follows:

lcn = 0.084375(n − 1) + 0.1125, n = 1, 2, . . . , 6. (4)

Fig. 14(a) displays the simulated S-parameters of the proposed
BPF, and the simulation of |S21| with different values of lc is
displayed in Fig. 14(b). It can be seen in Fig. 14(a) that the
proposed BPF has a passband from 67 to 100 GHz with a
3-dB fractional bandwidth of 39.5%, and its simulated center
frequency is at 83.5 GHz with an insertion loss of 0.35 dB. The
proposed BPF also has wide out-of-band rejection (referring
to −10 dB), whose simulated bandwidths of upper and lower

Fig. 13. Millimeter-wave E-plane waveguide BPF based on grounded SSPPs.

TABLE IV

DIMENSIONS OF MILLIMETER-WAVE E-PLANE
WAVEGUIDE BPF (UNIT: mm)

stopbands are 56 and 65 GHz, respectively. As lc increases
from 0.54 to 0.585 mm, the upper cutoff frequency will
be reduced from 103 to 93 GHz for the proposed BPF,
which agrees well with the relationships between asymptotic
frequencies and parameter lc in Fig. 12(a).

To observe the transmission characteristics, Fig. 15 illus-
trates the electric field distributions at the operating fre-
quencies of 30, 80, and 120 GHz, which are located at
the lower stopband, passband, and upper stopband of the
proposed BPF, respectively. The electromagnetic wave cannot
propagate through the SSPP waveguide in Fig. 15(a) when
its working frequency (30 GHz) is smaller than the cutoff
frequency of WR-10 rectangular waveguide. It can be observed
in Fig. 15(b) that only the electromagnetic wave in the
passband can propagate through the SSPP waveguide. Besides,
the electric field distribution of y-o-z cross section in Fig. 15(b)
indicates that the propagation of electromagnetic wave can be
effectively confined on the surface of SSPP waveguide. When
the proposed BPF is operated at 120 GHz in Fig. 15(c), the
electromagnetic wave can be effectively blocked and cannot
propagate through the SSPP waveguide from input port to
output port.

IV. FABRICATION AND MEASUREMENT

To verify the feasibility of BPF designs, the millimeter-
wave E-plane waveguide BPFs based on uniform, stepped-
impedance, and grounded SSPPs are fabricated and measured,
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Fig. 14. (a) Simulated S-parameters of the proposed millimeter-wave E-plane
waveguide BPF based on grounded SSPPs and (b) its simulated |S21| with
different values of lc .

Fig. 15. Electric field distributions of the proposed BPF at (a) 30, (b) 80,
and (c) 120 GHz.

respectively. The measured setup of these fabricated BPFs is
displayed in Fig. 16(a) and (b). The inner profile of fabricated
WR-10 rectangular waveguide is illustrated in Fig. 16(c) for
observing the structures of fabricated BPFs. The proposed
SSPP waveguides are placed in the slots of bottom cavity, and
the total length of waveguide is 20 mm for the connection with
W-band extender module and vector network analyzer Ceyear
AV3672E.

Although the measurements of millimeter-wave E-plane
waveguide BPFs are not supported in the whole frequency

Fig. 16. (a) Measurement platform, (b) zoomed-in view of the device under
test (DUT), and (c) inner profile of the fabricated WR-10 waveguide.

TABLE V

PERFORMANCE COMPARISONS WITH PREVIOUS W-BAND BPFS

region due to the measured limitation of frequency extender
module, the fabricated BPFs are tested in the entire W-band
(75–110 GHz). The measured S-parameters along with the
corresponding photographs of these three fabricated BPFs are
displayed in Fig. 17.

Good agreement between simulated and measured results
of the fabricated BPFs can be clearly observed in Fig. 17.
It can be seen that all measured reflection coefficients (S11)
of fabricated BPFs are below −10 dB, and the measured
minimum insertion losses are 0.58, 0.4, and 0.35 dB, respec-
tively. All three fabricated BPFs have flat passbands and sharp
roll-off skirts. The slight deviations between simulated and
measured results of the proposed BPFs are mainly caused by
the inaccuracies of manufacturing and assembling. Based on
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Fig. 17. Simulated and measured results of the E-plane waveguide BPFs
based on (a) uniform SSPPs, (b) stepped-impedance SSPPs, and (c) grounded
SSPPs.

the measured results, it is verified that all of these fabricated
BPFs possess good filtering performance and wide out-of-band
rejection level.

Table V tabulates the characteristic comparisons of the
proposed BPFs with some previously reported works. As can
be observed, comparing with the works presented in [20], [21],
[37], [38], and [39], our designs use the same technology
for implementation and operate at W-band, but achieve better
insertion losses and shape factors.

V. CONCLUSION

Novel millimeter-wave E-plane waveguide BPFs based on
three different SSPPs are presented. The bandwidths and

upper cutoff frequencies of the proposed BPFs can be flexibly
adjusted by controlling the asymptotic frequencies of SSPP
unit cells. Reasonable agreement between measured and sim-
ulated results indicates that the design method of the proposed
E-plane waveguide BPFs is very attractive for the applications
in millimeter-wave wireless communication systems.
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