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Abstract— A 60-GHz compact dual-mode on-chip band-
pass filter (BPF) is presented using gallium arsenide (GaAs)
technology. To demonstrate the working mechanism of the
proposed BPF, an LC equivalent circuit model is conceived
and analyzed for further investigation of the transmission
poles and zeros. Finally, a prototype of the BPF is fabricated
and tested to validate the proposed idea, whose simulated
and measured results are in good agreement. The mea-
surements show that it has a center frequency of 58.7 GHz
with a bandwidth of 18.4%, and the minimum insertion loss
within the passband is 2.42 dB. The chip size, excluding the
feedings, is about 0.158 mm × 0.344 mm.

Index Terms— Bandpass filter, GaAs technology, millime-
ter wave circuits, on-chip devices.

I. INTRODUCTION

M ILLIMETER-WAVE bandpass filters (BPFs) have
attracted increasing attention recently with the develop-

ment of the fifth-generation (5G) communications. Especially,
the design of on-chip BPFs is more valuable due to the
advantage of small physical sizes, but simultaneously is very
challenging. Several methods for the on-chip filter design have
been presented in recent years using silicon-based [1]–[7]
and III/V [8]–[13] technologies. For instance, conductor-
backed half-wavelength resonators and coplanar waveguide
feedings were utilized to design a millimeter-wave 35-GHz
BPF with two transmission zeros (TZs) in [1], where good
stopband characteristics at desired frequencies could be real-
ized. However, the passband insertion loss would be also dete-
riorated, which was larger than 4.5 dB. In [9], parallel coupled
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lines and open/shorted stubs were employed to construct two
28-GHz BPFs with high selectivity, nevertheless, only coupled
lines would be just over quarter wavelength, resulting in very
large sizes of the designed BPFs. In [11], an edge-coupled cell
was studied by means of the lumped equivalent circuit and
then converted to the resonator for the BPF implementation at
23.5 GHz. However, the design step was complicated and the
chip size was still large.

Furthermore, some on-chip BPF works were operated
at higher frequencies, e.g., 60-GHz band using CMOS
process [14]–[16] and GaAs technology [12], [17], [18].
In [12], an E-shaped dual-mode resonator was employed along
with a stepped impedance resonator to design a two-pole BPF,
whose topology was similar to the edge-coupled cell in [11].
Consequently, the presented resonator occupied a relatively
large die area. In [14], a ring resonator structure with a pertur-
bation patch was proposed to construct a 60-GHz dual-mode
BPF, whose method was usually used for the BPF design
on the printed circuit board. However, the performance was
hardly improved and the circumference of the ring resonator
was about one guided wavelength, which was very large.
In [15] and [16], second-order BPFs were designed with two
transmission poles (TPs) in order to obtain broad bandwidth
characteristics, but at the expense of the chip sizes.

In our previous works [17], [18], the theory of spoof surface
plasmon polaritons was introduced and then applied in the
design of on-chip BPFs. In spite of wideband performance,
their sizes were still hardly reduced. In this letter, a first-order
dual-mode BPF having two TPs within the passband and a TZ
at the stopband is presented using GaAs technology. Instead
of second-order design, this approach also can generate two
resonance modes within the passband of BPF, thus the trade-
off between bandwidth and size can be effectively solved. The
measurements show that the designed compact BPF possesses
a flat frequency response in the passband with low insertion
loss.

II. DESIGN OF THE 60-GHz ON-CHIP BPF
Fig. 1(a) shows the stack-up of the standard 0.15-μm GaAs

pHEMT technology, where two metal layers M1 and M2 with
the thicknesses of 2 μm and 1 μm, respectively, are available
for circuit design, and their conductivities are both 4 ×
107S/m. The relative permittivity of the GaAs and polyimide
films are 12.9 and 2.9, respectively, and their thicknesses are
75 μm and 1.8 μm, respectively. A metallic ground is coated
beneath the GaAs material. Using this GaAs technology,
a compact dual-mode BPF is designed on M1 layer with a
square via to the ground, as illustrated in Fig. 1(b).
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Fig. 1. (a) Stack-up of the employed 0.15-μm GaAs pHEMT technology.
(b) Proposed compact dual-mode BPF, where l1 = 135 μm, l2 = 95 μm,
l3 = 52.5 μm, l4 = 180 μm, l5 = 36 μm, w0 = 50 μm, w1 = 20 μm,
w2 = 20 μm, s1 = 4 μm, and s2 = 5 μm.

Fig. 2. LC equivalent circuit models of the designed BPF (a) without
loss and (b) with loss.

Fig. 3. EM and LC equivalent circuit simulations (with and without loss),
where the parameters in Fig. 2 are set as: L1 = 111 pH, L2 = 122 pH,
L3 = 218 pH, Lg = 299 pH, C1 = 12 fF, C2 = 10 fF, C3 = 19.7 fF,
R1 = 10.4 Ω and R2 = 0.8 Ω.

To understand the working mechanism behind the BPF
structure, an LC equivalent circuit model is constructed in
Fig. 2(a). The metal strips coupled to the feeding lines with
lengths of (l1 +w0/2) and (l2 + w0/2) are assumed as an
inductor L1 and an inductor L2, respectively. The embedded
L-shaped metal strip is represented by an inductors L3. The
gap couplings between the closely spaced metal strips are
equivalently demonstrated by five capacitors (i.e., two C1, two
C2 and a C3). The short metal strip connected to the square via
together with the via itself can be regarded as an inductor Lg,
which is short-circuited to the ground. The resistors R1 and
R2 are inserted as shown in Fig. 2(b) when considering the
losses. As demonstrated in Fig. 3, the simulated S-parameters
of the LC equivalent circuits agree reasonably well with the
simulations of EM model in Fig. 1(b), where all of them have
two TPs (i.e., resonance frequencies) and a TZ. Especially,
when the metal and dielectric losses are considered, the inser-
tion loss (IL) of LC equivalent circuit in the passband is almost
identical to that of the EM model.

To simplify the analysis, the LC equivalent circuit model
without loss in Fig. 2(a) is used for the odd- and even-mode
analysis through bisecting into two halves along the central

Fig. 4. (a) Odd mode and (b) even mode of the LC equivalent circuit.

TABLE I
PERFORMANCE COMPARISONS WITH SOME

PREVIOUS ON-CHIP BPFS

plane [19], as shown in Fig. 4. For the odd-mode excitation,
the central plane in Fig. 2 will behave as a perfect electrical
wall and the input impedance of odd-mode equivalent circuit
in Fig. 4(a) can be derived as

Zodd = j
ωL2−ω3L4(L2C2 + 2L2C3)

2ω4 L2 L4C2C3−ω2(L4C2 + 2L4C3+2L2C3) + 1

− j

ωC1
, (1)

where L4 = L1+L3. Likewise, when the central plane behaves
as a perfect magnetic wall, the half circuit of Fig. 2 will be
the even-mode equivalent circuit as seen in Fig. 4(b) and its
corresponding even-mode input impedance can be obtained as

Zeven = 1

jωC1
+ jω(L2 + 2Lg). (2)

Therefore, the reflection coefficient S11 and transmission
coefficient S21 of the proposed BPF can be calculated as:

S11 = �e + �o

2
= Zeven Zodd − Z2

0

(Zeven + Z0) (Zodd + Z0)
(3a)

S21 = �e − �o

2
= Z0 (Zeven − Zodd)

(Zeven + Z0) (Zodd + Z0)
(3b)

The TZ can be determined by setting S21 = 0, and
consequently the condition of Zeven = Zodd needs to be
satisfied according to (3b). Through calculating (1) equal
to (2), the position of TZ is found, which is mainly determined
by the capacitor C3 and inductor L2. As illustrated in Fig. 5(a),
when the value of C3 increases from 18.7 fF to 20.7 fF, the TZ
will be adjusted from 68 GHz to 64.4 GHz, thus the bandwidth
of BPF will be decreased accordingly. Similarly, the inductor
L2 can also control the position of TZ, as shown in Fig. 5(b).
By setting S11 = 0 through equation (3a), the two transmission
poles can be obtained, one of which on the right side will be
also moved as the TZ is adjusted by changing the value of
C3 or L2. While the other transmission pole on the left side
remains fixed. On the other hand, the transmission pole on
the left side is mainly determined by the parameters C1 and
Lg, while the one on the right side and the TZ will both keep
fixed, as seen in Figs. 5(c) and 5(d).
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Fig. 5. Simulated S-parameters with different values of (a) C3, (b) L2,
(c) C1, and (d) Lg.

Moreover, as the value of C3 (or L2) further increases to
35.7 fF (or 227 pH), the TZ at the right edge of the passband
will be moved to the left edge as seen in Figs. 5(a) and 5(b).
Similarly, the TZ can be also moved from the right to left
edge of the passband by tuning C1 or Lg as shown in
Figs. 5(c) and 5(d). Therefore, good selectivity of the proposed
BPF at the right or left edge of the passband can be easily
chosen. Note that the operating frequency of the BPF will be
shifted when the TZ is moved from the right edge to the left
edge of the passband. But we can adjust the values of C1 and
C3 to move the operating frequency back to the previous one,
i.e., 60 GHz, as shown in Fig. 6(a). Similarly, the values of L2
and Lg are also tuned to manipulate the operating frequency
of the BPF, as demonstrated in Fig. 6(b).

Fig. 6. Adjustment of operating frequency with different values of
(a) C1 & C3 and (b) L2 & Lg.

Fig. 7. Simulated and measured results of the proposed BPF.

III. ON-WAFER MEASUREMENTS

For further demonstration of the proposed BPF, an example
is fabricated and then measured via an on-wafer ground-signal-
ground probing using a vector network analyzer. Fig. 7 shows
the EM simulated and measured results of S-parameters of the
BPF, which are reasonably in good agreement. The measure-
ments show that it has a center frequency at 58.7 GHz with a
3-dB bandwidth from 53.3 GHz to 64.1 GHz (18.4%). The ILs
are at the range between 2.42 and 3.07 dB within the passband,
and the return losses are better than 12.6 dB. The calculated
unloaded quality factor [20] of the proposed BPF is 52, which
is higher than the ones in previous works [4], [15], [16].

The die photograph of the designed filter can be seen in
the inset of Fig. 7. The chip size, excluding the feedings,
is 0.158 mm × 0.344 mm. The performance comparisons with
some recently reported on-chip BPFs have been tabulated in
Table I. As can be seen, the proposed BPF has the advantages
of low IL and small chip size.

IV. CONCLUSION

A compact GaAs-based dual-mode BPF operating at
60-GHz band has been presented with a simple design topol-
ogy. Due to its very compact size, low in-band IL and moderate
bandwidth, the proposed BPF is readily used for 5G or even
beyond 5G communication systems.
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