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Abstract—A computationally efficient method which is based
on method of moments (MoM) for numerical analysis of antennas
with variable load impedance is proposed. The proposed method
deals with both of the variable load impedance and its current
as equivalent voltage source. Current distribution of antennas
with the variable load impedance is obtained directly from their
unloaded full-admittance matrix and the block impedance matrix
corresponding to the variable load impedance. The proposed
method is quite computationally efficient because inversion of the
full-impedance matrix of the antennas is unnecessary when their
load impedance varies. Moreover, the proposed method does not
include any approximation and its result shows perfect agreement
with that of the full-wave analysis. Numerical results of the
proposed method are compared with those of conventional MoM
using our in-house code and its performance is demonstrated.

Index Terms—Method of moments, Load impedance, Anten-
nas, Array Antennas.

I. I NTRODUCTION

Method of moments (MoM) is well-known as one of the
powerful techniques for numerical analysis of antennas or scat-
terers [1]. The MoM has been applied to numerical analysis
of wire antennas[2], [3], planar antennas [4] and dielectric
materials[5]. The MoM is computationally efficient because
unknown currents to be obtained are only distributed on anten-
nas or scatterers themselves while unknown electric/magnetic
fields to be obtained are distributed on entire region including
antennas and scatterers for finite element method (FEM) or
finite difference time domain (FDTD) method.

Although the MoM is computationally efficient, sophis-
ticated techniques are necessary for numerical analysis of
large-scale problems. One of the well-known techniques is an
iterative solver such as fast multipole method (FMM) [6], [7],
adaptive integral method (AIM) [8], and conjugate-gradient
fast fourier transform (CG-FFT) [9]. The iterative solvers
update unknown currents iteratively and large-scale problems
can be solved without resorting conventional direct solvers.
Another technique is so-called macro basis function (MBF)
method, such as characteristic basis function method (CBFM)
[10], [11] or sub-entire domain (SED) basis functions [12],
[13]. The MBF method enables to reduce the size of the
original large-scale problems and reduced problems can be
solved using conventional direct solvers.
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On the other hand, reconfigurable antennas are widely used
because of flexibility in their performance such as directivity,
frequency band, and so on. A large reflectarray using single bit
phase shifters has been proposed for millimeter-wave imaging
systems [14]. A p-i-n diode is loaded with a microstrip patch
element and working as an RF switch. Owing to the p-i-
n diode, beam scanning capability is available for designed
reflectarrays. During design of the reflectarrays, the p-i-n
diode is modeled as a series circuit of resistance, inductance
and capacitance. Microstrip antennas with tunable reactance
devices have been proposed [15]. It has been shown that
wide beam scanning angle is available owing to tunable
reactance devices. As mentioned here, some of reconfigurable
antennas are designed using variable load impedance and
their performance must be simulated every time when the
load impedance varies. It is well-known that the MoM is
useful for numerical analysis of reconfigurable antennas with
variable load impedance but a long CPU time is unavoidable
for numerical simulation because full-size problems must be
solved iteratively even when the sophisticated MoMs such as
FMM or CBFM are used. Therefore, how to deal with variable
load impedance efficiently during their design using the MoM
is quite important in practice.

In this paper, a computationally efficient method for nu-
merical analysis of antennas with variable load impedance is
proposed. The proposed method requires inversion of full-
impedance matrix without load impedance only one time.
Small block matrix equations corresponding to load impedance
are solved every time when the load impedance varies. The
proposed method is computationally efficient because inver-
sion of full-impedance matrix is unnecessary when the load
impedance varies. Small block matrix equations are solved
sequentially using the the proposed method without any ap-
proximation. As a result, current distribution obtained using
the proposed method is accurate.

This paper expands the work presented briefly as a technical
report without peer-review [16]. The technical report [16] has
just demonstrated capability of the proposed method roughly
via numerical simulation of simple dipole/loop antennas.
Rigorous formulation of the proposed method reflecting all
different port conditions, i.e. port with voltage source, load
impedance, and both of them, is unavailable in the technical
report. As a result, computational cost of the proposed method
has not been discussed rigorously in the technical report. In
addition, performance of the proposed method for practical an-
tennas is unavailable in the technical report. On the other hand,
this paper gives rigorous formulation of the proposed method
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Fig. 1. Antennas with load impedances.

and block matrix equations corresponding to all different port
conditions are clearly formulated. Additional computational
cost of the proposed method is estimated quantitatively based
on the formulation. Performance of the proposed method is
demonstrated via numerical simulation of practical antennas
with arbitrary load impedances.

This paper is organized as follows. In section II, detailed
algorithm of the proposed method is clearly described and
its additional computational cost is estimated. In section III,
performance of the proposed method is demonstrated via a
couple of practical numerical examples. Finally, conclusion is
given in section IV.

II. PROPOSEDMETHOD

Fig. 1 shows antennas with load impedances. According
to formulation of the MoM, unknown currents of the antennas
can be obtained from an electric field integral equation (EFIE)
[1]. Owing to basis/testing functions, the EFIE can be dis-
cretized into anN×N matrix equation whereN is the number
of unknown current segments. Resultant matrix equation can
be solved using direct/iterative solvers and unknown current
is obtained. Fig. 2 shows anN -port network model for the
antennas shown in Fig. 1. For example, six ports of the
antennas shown in Fig. 1 are connected to voltage source,
load impedance, or both of them. All remaining ports are short
circuited.

A matrix equation to be solved is as follows.

(ZN×N + ZL
N×N )IN = VN (1)

Here, ZN×N is an N × N impedance matrix,ZL
N×N is an

N × N load impedance matrix,IN is an N -dimensional
current vector, andVN is anN -dimensional voltage vector. It
should be noted thatZL

N×N is diagonal matrix and its diagonal
entries are nonzero for segments with load impedance while
are zero for segments without load impedance. Eq. (1) can be

N port network

N=N
s
+N

l
+N

sl
+N

r

N
s
: Number of segments with 

voltage source

N
sl
: Number of segments with 

voltage source and arbitrary load 

impedance

N
l
: Number of segments with 

arbitrary load impedance

N
r
: Number of remaining 

segments

#1

#N(=N
s
+ N

sl

+ N
l
+ N

r
)

#N
s

#(N
s
+ N

sl
)

#(N
s
+ N

sl

+ N
l
)

Fig. 2. An N -port network of the antennas shown in Fig. 1.

transformed as follows.

ZN×NIN = VN − ZL
N×NIN

IN = Z−1
N×N (VN − ZL

N×NIN )

= YN×N (VN − ZL
N×NIN ) (2)

(∵ YN×N ≡ Z−1
N×N )

Here, (2) is decomposed into block matrices/vectors in order
to solve it efficiently for variable load impedance.

IN = YN×N (VN − ZL
N×NIN )

INs

INsl

INl

INr

 =
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VNsl

0
0
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0 0 0 0
0 ZL
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0 0

0 0 ZL
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0
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×
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
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×


VNs

VNsl
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Nsl×Nsl
INsl

−ZL
Nl×Nl

INl

0

 (3)

Here, Ns is the number of segments with voltage source,
Nsl is the number of segments with voltage source and
load impedance,Nl is the number of segments with load
impedance, andNr is the number of remaining segments (i.e.
N = Ns + Nl + Nsl + Nr). Yi×i is i × i block admittance
matrix wherei = Ns, Nl, Nsl, Nr, ZL

Nsl×Nsl
andZL

Nl×Nl
are
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Nsl × Nsl, Nl × Nl block load impedance matrices.INs ,
INsl

, INl
, and INr are Ns, Nsl, Nl, and Nr dimensional

block current vector, respectively.VNs andVNsl
areNs and

Nsl dimensional block voltage vector, respectively. As shown
in right hand side of (3), block load impedance matrices
and unknown current of segments with load impedance are
assumed to be equivalent voltage source.

Eq. (3) can be expressed using following four block matrix
equations as follows.

INs = YNs×NsVNs + YNs×Nsl
(VNsl

− ZL
Nsl×Nsl

INsl
)

−YNs×Nl
ZL

Nl×Nl
INl

(4)

INsl
= YNsl×NsVNs + YNsl×Nsl

(VNsl
− ZL

Nsl×Nsl
INsl

)

−YNsl×Nl
ZL

Nl×Nl
INl

(5)

INl
= YNl×NsVNs + YNl×Nsl

(VNsl
− ZL

Nsl×Nsl
INsl

)

−YNl×Nl
ZL

Nl×Nl
INl

(6)

INr = YNr×NsVNs + YNr×Nsl
(VNsl

− ZL
Nsl×Nsl

INsl
)

−YNr×Nl
ZL

Nl×Nl
INl

(7)

Eq. (6) can be transformed as follows.

INl
= (UNl×Nl

+ YNl×Nl
ZL

Nl×Nl
)−1×

(YNl×NsVNs + YNl×Nsl
(VNsl

− ZL
Nsl×Nsl

INsl
))
(8)

Here,UNl×Nl
is a Nl ×Nl unit matrix. Eq. (8) is substituted

into (5).

INsl
= YNsl×NsVNs + YNsl×Nsl

(VNsl
− ZL

Nsl×Nsl
INsl

)

− YNsl×Nl
ZL

Nl×Nl
(UNl×Nl

+ YNl×Nl
ZL

Nl×Nl
)−1

× (YNl×NsVNs + YNl×Nsl
(VNsl

− ZL
Nsl×Nsl

INsl
))
(9)

After transposition of terms in (9), following equation to be
solved is obtained.

PNsl×Nsl
INsl

= QNsl
, (10)

where

PNsl×Nsl
= UNsl×Nsl

+ YNsl×Nsl
ZL

Nsl×Nsl

− YNsl×Nl
ZL

Nl×Nl
(UNl×Nl

+ YNl×Nl
ZL

Nl×Nl
)−1

× YNl×Nsl
ZL

Nsl×Nsl
(11)

QNsl
= YNsl×NsVNs + YNsl×Nsl

VNsl

− YNsl×Nl
ZL

Nl×Nl
(UNl×Nl

+ YNl×Nl
ZL

Nl×Nl
)−1

× (YNl×NsVNs + YNl×Nsl
VNsl

) (12)

Here, UNsl×Nsl
is a Nsl × Nsl unit matrix. OnceINsl

is
obtained from (10),INl

is readily obtained from (8). Finally,
INsl

andINl
are substituted into Eqs. (4) and (7),INs andINr

are obtained. According to Eqs. (4)∼(10), current distribution
of the antenna with variable load impedance can be obtained
without inverting(ZN×N +ZL

N×N ) every time when the load
impedance varies (i.e. one time inversion ofZN×N is only
necessary. ).

As shown in this section, the proposed method just solves
block matrix equations sequentially and no additional approx-
imations are introduced for its matrix solver. Moreover, no
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Fig. 3. Two monopole antennas on a helicopter.

additional approximations to the MoM impedance matrix are
introduced to the proposed method. Therefore, current of the
antenna obtained using the proposed method perfectly agrees
with that of full-wave analysis, i.e. the MoM.

Except for inversion of the full-impedance matrix, the most
computationally expensive part is inversion ofPNsl×Nsl

in
(10) or inversion of (UNl×Nl

+ YNl×Nl
ZL

Nl×Nl
) in (8).

The order of CPU time for inversion of these matrices is
proportional toN3

sl andN3
l , respectively, while that of the full-

impedance matrix inversion is proportional toN3. As shown in
numerical examples later, variable load impedances are often
loaded with small number of segments. As a result,Nsl and
Nl are much smaller thanN for practical antennas. Therefore,
CPU time of the proposed method is negligibly small once the
inversion of the unloaded full-impedance matrix is performed.

III. N UMERICAL SIMULATION

Performance of the proposed method is demonstrated via
numerical simulation. Numerical simulation was performed
using the MoM with Rao-Wilton-Glisson (RWG) basis func-
tion [17]. The MoM with RWG basis function has been
implemented by authors as a full-wave analysis method. All
numerical simulations in this paper were implemented on an
Intel Core i7-4800MQ 2.7 GHz processor with 16 GB RAM.

A. Antennas with variable inductors

Fig. 3 is two monopole antennas on a helicopter. This
numerical example is for demonstrating the performance of
the proposed method on complicated antennas. Operating
frequency isf = 100 MHz, length of the monopole antennas is
l = 0.5 m, and width of the monopole antennas isw = 0.1 m.
Size of the helicopter is approximately18.6×22×7.1 m3. The
two monopole antennas are uniformly excited at their ports
and variable inductancesL1 andL2 are loaded with ports for
impedance matching. The inductances vary from 50 nH to 140
nH and its interval is 10 nH. The total number of unknowns
is N = 7, 537, Ns = Nl = 0, Nsl = 2, Nr = 7, 535.

Surface current distributions of two monopole antennas
on the helicopter obtained using full-wave analysis and the
proposed method are shown in Figs. 4 and 5, respectively.
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Fig. 4. Surface current distribution of two monopole antennas on a helicopter
(L1 = L2 = 100 nH, Full-wave analysis).
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Fig. 5. Surface current distribution of two monopole antennas on a helicopter
(L1 = L2 = 100 nH, Proposed method).

As mentioned earlier, the proposed method does not include
approximation, surface current distribution obtained using the
proposed method is in perfect agreement with that of the full-
wave analysis.

The total CPU time is 136,473 sec. for full-wave analysis
while 15,927 sec. for the proposed method. For full-wave anal-
ysis, inversion of theN×N full-impedance matrix is necessary
every time when inductance varies. Therefore, inversion of
the N × N full-impedance matrix with load impedance was
performed 10 times and resultant CPU time was long. On the
other hand, inversion of theN × N unloaded full-impedance
matrix was performed only one time for the proposed method.
ResultantN × N unloaded full-admittance matrix is stored
and reused every time when inductance varies. Therefore, total
CPU time of the proposed method is quite small because small
block matrix equations are only required to be solved every
time when inductance varies. It can be concluded that the
proposed method is quite efficient for numerical analysis of
complicated antennas with variable load impedance.
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Fig. 6. A planar bowtie array antenna over an infinite ground plane.

-80 -40
[dBA/m]

Fig. 7. Surface current distribution of a10 × 10 bowtie array antenna over
an infinite ground plane (Proposed method).

B. Array antennas with defective elements

Fig. 6 is a planar bowtie array antenna over an infinite
ground plane. Multiple array elements are assumed to be
defective elements whose feeding ports are open circuited.
Zs = 100, 000 Ω is loaded with defective elements to be open
circuited whileZs = 50 Ω is loaded with operating elements.
This numerical example is applicable to source reconstruction
of array antennas and their diagnosis. Operating frequency is
f = 2 GHz, length of an array element isl = 0.1 m, width of
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Fig. 8. ESPAR-antenna.

feeding edge ist = 0.01 m, opening angle of the array element
is α = 45◦. Height of the array element from the ground plane
is h = 0.0375 m, array spacing isdx = dy = 0.09 m, the total
number of array elements is10×10 = 100. All array elements
are excited uniformly. The array element is divided into 63
unknowns and infinite ground plane is modeled as image of
the array antenna. The total number of unknowns including
image of the array antenna isN = 12, 600, Ns = Nl = 0,
Nsl = 200, Nr = 12, 400. During the numerical simulation,
20 % of array elements are assigned to be defective elements
in a random manner and numerical simulation is performed
100 times.

Fig. 7 shows surface current distribution of a10×10 bowtie
array antenna including 20 % defective elements obtained
using the proposed method. Array elements surrounded by
dashed red lines are defective elements. It is found that
current of defective elements is smaller than that of operating
elements because defective elements are open circuited during
numerical simulation.

The total CPU time is 76,176 sec. for the proposed method
and most of the CPU time is for inversion of theN × N
unloaded full-impedance matrix. Remaining CPU time is
mainly for inversion of theNsl×Nsl block impedance matrix
PNsl×Nsl

in (10) but is negligibly small becauseNsl ≪ N .
For example, CPU time for inversion ofPNsl×Nsl

was only
0.3 sec. for the array antenna whereNsl = 200. Therefore,
it can be said that the proposed method enables to perform
a large number of numerical simulations at the expense of
small CPU time. On the other hand, 100 times of full-wave
analysis were unable because of long CPU time estimated as
100 days. According to results of numerical simulation, it is
demonstrated that the proposed method enables to reflect the
effect of load impedance to numerical results, directly.

C. ESPAR Antenna

Fig. 8 shows an electronically steerable passive array radi-
ator (ESPAR) antenna on a ground skirt [18]-[20]. Operating
frequency isf = 300 MHz, length of monopole elements is
l = 0.25 m, width of monopole elements isw = 0.01 m,

x

y
z

#1

#2

#3

#4

#5

#6

Fig. 9. Element number of parasitic monopole elements of the ESPAR
antenna.

TABLE I
VARIABLE LOAD IMPEDANCE OF PARASITIC MONOPOLE ELEMENTS.

Direction of mainbeam Combination of load impedances
ϕ0 = 90◦ L =10 nH for #5, #6, #1

C =10 pF for#2, #3, #4
ϕ0 = 150◦ L =10 nH for #6, #1, #2

C =10 pF for#3, #4, #5
ϕ0 = 210◦ L =10 nH for #1, #2, #3

C =10 pF for#4, #5, #6
ϕ0 = 270◦ L =10 nH for #2, #3, #4

C =10 pF for#5, #6, #1
ϕ0 = 330◦ L =10 nH for #3, #4, #5

C =10 pF for#6, #1, #2
ϕ0 = 30◦ L =10 nH for #4, #5, #6

C =10 pF for#1, #2, #3

90
o

270
o

0
o

180
o

0  dBi-20 -10-30

x

y φ0=90
o

 φ0=210
o

 φ0=330
o

Fig. 10. Actual gain patterns of ESPAR antennas (Proposed method).

spacing between the monopole element and parasitic elements
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is d = 0.25 m, angle between two adjacent parasitic elements
is α = 60◦. Height and radius of the ground skirt areh = 0.25
m andr = 0.7 m, respectively. A central monopole element
is excited at its port by voltage source with50 Ω source
resistance. The total number of unknowns isN = 3, 902,
Ns = 0, Nl = 6, Nsl = 1, Nr = 3, 895. According to variable
load impedance at parasitic elements surrounding the central
monopole element, the ESPAR antenna enables to steer its
main beam. Table I shows direction of mainbeam and corre-
sponding combination of variable load impedances. Parasitic
monopole elements with inductors (i.e.Zp = jωL) work as
reflectors while those with capacitances (i.e.Zp = 1

jωC ) work
as directors.

Fig. 10 shows actual gain patterns of the ESPAR antenna,
whose mainbeam direction isϕ0 = 90◦, 210◦, 330◦. It is
found that direction of main beam can be scanned as the load
impedance varies. The total CPU time for numerical analysis
of the ESPAR antennas with six combination of variable load
impedances shown in TABLE I is 1,808 sec. for the proposed
method while is 9,649 sec. for full-wave analysis. According
to results of numerical simulation, it is demonstrated that the
proposed method is applicable to design of reconfigurable
antennas using variable load impedance.

IV. CONCLUSION

In this paper, a computationally efficient numerical analysis
method for antennas with variable load impedance has been
proposed. The proposed method deals with the load impedance
and its current as equivalent voltage source. As a result, current
distribution of the antennas with variable load impedance can
be obtained directly once unloaded full-impedance matrix is
inverted. The proposed method does not include approximation
and resultant current shows perfect agreement with that of full-
wave analysis. Performance of the proposed method has been
shown via numerical simulation of practical antennas with
variable load impedance.
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