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Abstract ─ In this paper, a new construction method       

of reduced matrix equation is proposed to improve        

the iterative solution efficiency of characteristic basis 

function method (CBFM). Firstly, the singular value 

decomposition (SVD) technique is applied to compress 

the incident excitations and these new excitations 

retained on each block after SVD are defined as the 

excitation basis functions (EBFs). Then, the characteristic 

basis functions (CBFs) of each block are solved from 

these EBFs. Lastly, these EBFs and CBFs are used as the 

testing functions and the basis functions to construct the 

reduction matrix equation, respectively. The diagonal 

sub-matrices of the reduced matrix constructed by the 

proposed method are all identity matrices. Thus, the 

condition of the reduced matrix is improved resulting in 

a smaller number of iterations required for the solution 

of the reduced matrix equation. The numerical results 

validate the accuracy of the proposed method. Compared 

with the traditional CBFM, the iterative solution 

efficiency of the reduced matrix equation constructed by 

the proposed method is significantly improved. 

 

Index Terms ─ Characteristic basis functions, 

characteristic basis function method, reduced matrix 

equation, singular value decomposition, testing functions. 
 

I. INTRODUCTION  

The method of moments (MoM) is known as an 

effective method to solve the electromagnetic scattering 

problems. However, the computational time and memory 

requirement of MoM increase significantly while 

dealing with large problems. In order to mitigate these 

problems, a number of acceleration algorithms have been 

proposed, such as fast multipole method (FMM) [1], 

multilevel fast multipole method (MLFMM) [2-4], 

adaptive integral method (AIM) [5], adaptive cross 

approximation (ACA) algorithm [6,7], precorrected-fast 

Fourier transform (P-FFT) [8] method, and fast dipole 

method (FDM) [9]. These methods effectively utilize the 

matrix-vector products (MVPs) and can handle large 

number of unknowns. Another essentially different 

family of techniques reduces the number of degrees of 

freedom (DoFs) by employing macro basis functions  

and domain-decomposition schemes, instead of utilizing 

the rapid computation of the MVPs. This family of 

techniques includes domain decomposition method 

(DDM) [10-12], synthetic function expansion technique 

(SFX) [13], accurate sub-entire-domain (ASED) basis 

function method [14], characteristic mode (CM) [15,16], 

and characteristic basis function method (CBFM) [17-

19]. Among these techniques, the CBFM has been 

successfully and widely applied to printed circuits and 

scattering problems. The main computational of the 

CBFM consists of three parts: characteristic basis 

functions (CBFs) generation; reduced matrix construction; 

and reduced matrix equation solution. In recent years, 

several techniques have been proposed to improve the 

performance of the CBFM. In [20], multistep angular-

derived CBFs generation technique has been proposed to 

reduce the singular value decomposition (SVD) time of 

generating the CBFs. In [21], the ACA-SVD has been 

adapted to efficiently generate the CBFs, which reduces 

both the time of generating the initial CBFs and the SVD 

time of initial CBFs. In [22], an improved primary 

CBFM (IP-CBFM) has been proposed to reduce the 

amount of memory used for reduced matrix by 

combining the secondary CBFs with the primary CBFs. 

In [23], the high level CBFs have been proposed to 
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improve the iterative solution efficiency of CBFM. 

Furthermore, some hybrid methods have been presented, 

such as CBFM-FMM [24], CBFM-MLFMM [25], 

CBFM-ACA [26], and CBFM-FDM [27] to accelerate 

the vector-matrix-vector products (VMVPs) in the 

construction of the reduced matrix. To some extent,  

these methods can save time and reduce the storage 

requirement. However, the size of reduced matrix in 

CBFM increases when analyzing the electrically large 

problems. Therefore, the solution of the reduced matrix 

equation should be performed by an iterative method. In 

this paper, a new construction method of reduced matrix 

equation is proposed to improve the iterative solution 

efficiency of CBFM. The diagonal sub-matrices of the 

reduced matrix constructed by the proposed method are 

all identity matrices, which improve the condition of 

reduced matrix and reduce the number of iterations. 

 

II. CHARACTERISTIC BASIS FUNCTION 

METHOD  
The CBFM divides the target into M blocks, where 

each block is solved as an independent domain. For each 

block, the CBFs can be obtained as: 

 CBFs = ,e

ii i iZ J E  (1)
                         

 

where e

iiZ
 
denotes the self-impedance of the extended 

block i, with dimensions eb eb

i iN N , for i = 1, 2,…, M. 

The eb

iN  represents the number of Rao-Wilton-Glisson 

(RWG) basis functions belonging to the extended block 

i, iE is the excitation matrix with dimensions pws

eb
iN N , 

and pwsN  is the number of incident excitations. In order 

to eliminate the redundant information in CBFs

iJ caused 

by overestimation, the SVD is used to reduce the 

redundancy of the initial CBFs. This factorization yields 

the following result: 

 CBFs T ,i i i iJ U W V  (2) 

where 
iU and

iV are orthogonal matrices with 

dimensions eb eb

i iN N  and
 pws pwsN N , respectively, and

iW is a diagonal matrix with dimensions 
pws

eb

iN N . 

The superscript T denotes the transpose operation. 

Suppose, the same number B of CBFs is retained on each 

block after SVD, where B is smaller than pwsN , the 

surface current of the target can be expressed as a liner 

combination of these CBFs as: 
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where k

ia are the unknown expansion coefficients and 

k

iJ is the kth CBF of block i. The Galerkin method [28] 

is used to determine the unknown expansion coefficients 

and a BM BM reduced matrix for the BM unknown 

expansion coefficients is obtained. Then the reduced 

matrix equation R RZ α E can be constructed as follow: 
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where  njmi L ,, , FF  denotes the coupling term between 

the mth CBF on block i and nth CBF on block j. mi,F  

and nj ,F are the mth and nth CBFs on blocks i and j, 

respectively.  rf pi, , and  rf qj ,  are the pth and qth 

RWG basis functions on blocks i and j, respectively. 

 qpij ,Z  stands for the coupling term between the pth 

RWG on block i and qth RWG on block j. The 

coefficient ),( mpiJ  denotes the value of the mth CBF, 

included on the block i, and sampled at the center of the 

pth RWG. iN  and jN  are the numbers of RWG basis 

functions on blocks i and j, respectively. Equation (5) 

enables us to express the coupling terms between the 

CBFs of two blocks as a simple product between 

matrices: 

 ,HR
jijiij JZJZ   (6) 

where H stands for conjugated transpose, ijZ  is the 

matrix containing the coupling terms between the RWGs 

on blocks i and j. Likewise, the voltage vector is then 

computed as: 

 .HR
iii EJE   (7) 
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It can be found from Eqs. (5), (6), and (7) that the 

CBFs ( iJ ) are used as higher level testing and basis 

functions in terms of RWG basis functions in the process 

of constructing the reduced matrix equation. For 

moderate size problems, the reduced matrix equation 

(Eq. (4)) can be solved via a single LU-decomposition 

and one matrix-vector product per excitation. However, 

for large size problems, the dimensions of the reduced 

matrix become so large that an iterative method should 

be used to solve the reduced matrix equation. 

 

III. NEW REDUCED MATRIX EQUATION 

CONSTRUCTION METHOD  
Firstly, the SVD is applied to deal with the 

excitation matrix before generating the CBFs: 

 
T ,iE = UWV  (8) 

where U and V are the orthogonal matrices of 

dimensions be eb

i iN N  and pws pwsN N , respectively. W 

is an pws

eb
iN N  diagonal matrix whose elements are the 

singular values of iE . Setting an appropriate threshold 

(typically 0.001), a new set of incident excitations will 

be obtained retaining only those with relative singular 

values above the threshold. Hence, a new excitation 

matrix named 
n ew

iE is obtained and the number of 

excitations is decreased. These new excitations are 

defined as the new testing functions of the block and 

denoted as excitation basis functions (EBFs). For 

simplicity, it is assumed that all the blocks contain the 

same number K of EBFs. The dimensions of 
n ew

iE are 

eb

iN K , and K is always smaller than pwsN . Replacing 

iE
 
in Eq. (1) with n ew ,iE  a new equation can be 

constructed as follows:  

 new n ew .e

ii i iZ J = E  (9) 

By solving Eq. (9), K CBFs ( new
iJ ) can be obtained 

on each block and are defined as the new basis functions. 

The total number of ma rixreqna iwtrewln iwte is M K , 

which is smaller than pwsM N  in the CBFM as 

pwsK N . The time required to generate the CBFs in 

the proposed method is reduced compared to the 

traditional CBFM. By using the EBFs and CBFs as the 

testing and the basis functions, the coupling terms 

between the CBFs of two blocks can be rewritten as: 

   ,newHnewRnew

jijiij JZEZ   (10) 

where 
n ew

iE is an unitary matrix. When ,i j  

  IEEZ  newHnewRnew

iiii , where I represents the identity 

matrix. Eq. (4) can be rewritten as: 
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where 
newHnewR

)(new
iii EEE  , it can be seen from Eq. 

(11) that the sub-matrix containing the coupling terms 

between the CBFs of each block becomes the identity 

matrix because of the orthogonal properties of the EBFs. 

Compared with the traditional CBFM, the condition 

number of the reduced matrix is improved, and the 

number of iterations required in the solution process is 

reduced accordingly. 
 

IV. NUMERICAL RESULTS  
In this section, three test samples are presented to 

demonstrate the accuracy and efficiency of the proposed 

method. All simulations are executed on a PC with an 

Intel(R) Core(TM) i5-6200 CPU with 2.3 GHz (only one 

core was used) and 48 GB RAM. The bi-conjugated 

stabilized gradient (BiCGStab) is selected as iterative 

solver with a residual error of 0.001. The relative error 

Err is introduced and defined as follows: 

  x FEKO FEKORCS RCS RCS 100%,Err     (12)                  

where
FEKORCS are the simulation results from the 

software FEKO, and 
xRCS are results computed by the 

traditional CBFM or the proposed method.  

Firstly, the scattering problem of a PEC plate with  

a side length of 2 m is considered at a frequency of       

500 MHz. The geometry is divided into 8246 triangular 

patches with an average length of /10  leading to 15286 

unknowns. The geometry is divided into 9 blocks, with 

each block extended by =0.15  in all directions. For 

both methods, 800 incident excitations are set. The total 

numbers of CBFs and the relative errors of two methods 

under different SVD thresholds are shown in Table 1. It 

can be seen from the table that the relative error of the 

proposed method converges faster with reducing SVD 

threshold than the traditional CBFM. In order to compare 

the iterative solution efficiency of the two methods, the 

reduced matrix dimensions of the proposed method     

and the traditional CBFM are 865865  and 8721872  

when the SVD thresholds are selected as 0.002 and 

0.001, respectively. The condition number of CBFM 

matrix is 11009, while the condition number of the 

proposed method matrix is only 2219. Figure 1 illustrates 

the iterative convergence of the two methods. It can be 

seen from the figure that the proposed method achieves 

a good convergence. In order to confirm the higher 

convergence of the proposed method, the observation of 

the eigenvalues distributions is presented in Fig. 2. The  
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figure shows that the convergence of the iterative 

solutions of the proposed method improves as the 

eigenvalues move away from the origin. The bistatic 

RCS in horizontal polarization calculated by the two 

methods are shown in Fig. 3. It is clear from the RCS 

curves that the results calculated by the proposed method 

agree well with the one by FEKO, and also the one by 

CBFM. The total number of iterations of CBFM is 63, 

while the one of proposed method is only 37. Thus, a 

41% of iterations number reduction is obtained.  
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Fig. 1. Iteration times at different residues of two 

methods. 

 

 
 

Fig. 2. Eigenvalues distribution of two methods. 
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Fig. 3. Bistatic RCS of a PEC plate in horizontal 

polarization. 

Next, the scattering problem of a PEC missile with 

a length of 1 m, a wingspan of 0.64 m, and a height of 

0.22 m is considered at a frequency of 3 GHz. The total 

number of unknowns is 85217, and the geometry is 

divided into 52 blocks. Each block is excited by using 

multiple 800 incident excitations. The CBFs produced 

by the CBFM and the proposed method are 6025 and 

6194, respectively. The condition number of CBFM 

matrix is 68341, and of proposed method matrix is      

only 7213. The average number of iterations of the 

conventional CBFM is 607 by using the iterative 

BiCGStab method without using the preconditioning 

techniques, while the proposed method requires only 299 

iterations. The CPU time spent in the solution of the 

reduced matrix equation is reduced from 311.9 second 

with CBFM to 161.2 second in the proposed method. 

The bistatic RCS in horizontal polarization calculated by 

the two methods are depicted in Fig. 4. It can be seen 

from the figure that the RCS curve of proposed method 

is in a good agreement with that of traditional CBFM. A 

good agreement with the result of FEKO is also achieved 

except around 115  and 69 . 
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Fig. 4. Bistatic RCS of a PEC missile in horizontal 

polarization. 

 

Finally, the monostatic RCS of a cone-sphere with 

gap (referenced from [29]) at a frequency of 10 GHz is 

calculated. Total 181 observation directions for 90

and ranging from
0 to 

180  are considered. The 

number of unknowns is 158881, while 11949 and 11832 

CBFs are obtained for the CBFM and the proposed 

method, respectively. The sparse approximate inverse 

preconditioner is applied to accelerate the iterative 

solution of reduced matrix equation. The average number 

of iterations per direction is 59.7 for the traditional 

CBFM, while this number is reduced to 32.1 iterations 

when the proposed method is applied. A substantial 

reduction in the CPU-time is obtained because of the 

better conditioned reduced matrix. Figure 5 shows a 

comparison of the results obtained by applying FEKO, 

CBFM, and the proposed method for monostatic RCS in 
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horizontal polarization. It can be observed from the 

figure that the results obtained by the proposed method 

agree well with that obtained by the FEKO. 
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Fig. 5. Monostatic RCS of the cone-sphere with gap in 

horizontal polarization. 

 

The CPU-times of the above three test examples 

using the CBFM and the proposed method are 

summarized in Table 2. Compared with the CBFM, the 

CPU-time of CBFs generation using the proposed 

method is reduced because the number of matrix 

equation solutions is significantly reduced. Moreover, 

the reduced matrix solution time is reduced because of 

the better conditioned system of equation using the 

proposed method. The CBFs generation time and the 

reduced matrix solving time are remarkably reduced and 

the gains are about 19.3% and 45.1%, respectively. 
  

V. CONCLUSION 
A new construction method of reduced matrix 

equation is proposed in this paper to improve the 

iterative solution efficiency of characteristic basis 

function method (CBFM). In the proposed method, the 

excitation basis functions (EBFs) are first constructed by 

using the singular value decomposition (SVD) technique. 

Then, the characteristic basis functions (CBFs) are 

obtained by using the EBFs. These EBFs and CBFs are 

defied as the testing and the basis functions, respectively. 

The diagonal sub-matrices of the reduced matrix 

constructed by the new testing and basis functions are all 

identity matrices, which improves the condition of 

reduced matrix. Thus, the total number of iterations to 

achieve reasonable results is significantly reduced. 

Numerical simulations are conducted to validate the 

performance of the proposed method. The results 

demonstrate that the number of iterations required by the 

proposed method is noticeably less than that by the 

traditional CBFM due to the better conditioned system 

of equation. Furthermore, the proposed method can also 

be combined with MLFFM, AIM, P-FFT, FDM and 

other algorithms to further improve the efficiency of the 

characteristic basis function method for analyzing the 

electromagnetic scattering characteristics of electrically 

large targets. 
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Table 1: The total CBFs number and the relative error of two methods under different SVD threshold 

SVD Threshold 0.8 0.5 0.1 0.05 0.01 0.005 0.002 0.001 

CBFM 
CBFs Number 20 112 369 446 623 699 796 872 

Err(%) 68.85 34.82 16.01 7.62 1.58 0.96 0.82 0.51 

Proposed Method 
CBFs Number 28 171 421 492 679 756 865 912 

Err(%) 56.09 18.71 5.12 3.14 0.86 0.61 0.57 0.49 

Table 2: CPU time of the CBFM and proposed method for different calculation steps 

Problems Method 
Impedance Matrix 

Calculation (s) 

CBFs 

Generation (s) 

Reduced Matrix 

Calculation (s) 

Solving 

Matrix (s) 

Total 

Time (s) 

Plate 

CBFM 239.1 747.7 84.1 0.8 1071.7 

Proposed 

Method 
242.9 479.7 83.3 0.5 806.4 

Missile CBFM 2205.6 6675.4 986.7 311.9 10179.6 

Proposed 

Method 
2209 5749.8 994.9 137.2 9090.9 

Cone-

Sphere 

with Gap 

CBFM 5040.3 21240.7 4516.3 277.2×181 80970.5 

Proposed 

Method 
5048.2 19661.8 4373.6 160.5×181 58134.1 
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