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SUMMARY Array antenna technology for wireless systems is highly
integrated for demands such as multi-functionality and high-performance.
This paper details recent technologies in Japan in design techniques based
on computational electromagnetics, antenna hardware techniques in the
millimeter-wave band, array signal processing to add adaptive functions,
and measurement methods to support design techniques, for array antennas
for future wireless systems. Prospects of these four technologies are also
described.
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netics, millimeter-wave, antenna measurement, signal processing

1. Introduction

In recent years, demands on various wireless systems, such
as mobile communications, radar, sensing and measure-
ment, are rapidly growing in all societies. There are two
demands on antenna for these wireless systems: one is multi-
functionality and the other is high-performance. Array an-
tenna technology is one of the best solutions as integrated
antenna system having these features, and has been studied
and developed by many researchers and engineers. The tech-
nology is based on the following four key elements. They
are computational electromagnetics as basis of array designs,
millimeter-wave antennas expected wideband usage as array
antenna hardware, array signal processing to add adaptive
functions to array antennas, and measurement methods to
support design techniques. Low power consumption is im-
portant in millimeter-band technologies, however, it is out of
scope in this paper due to the space limitation.

This paper surveys the current states and discusses their
directions focusing on these four technologies important for
future wireless systems. This paper is organized as fol-
lows. Section 2 gives a brief description of recent studies
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mainly performed by one of the authors on the computa-
tional electromagnetics for large-scale problems, such as
large-scale array antennas and reflectarrays. Section 3 deals
with millimeter-wave band array antennas as examples of
array antennas, because they could have higher functional-
ity coming from the small physical dimension in comparison
with microwave-band array antennas. Section 4 describes ar-
ray signal processing technologies such as adaptive array for
interference suppression and MIMO system for high-speed
wireless communications. Section 5 treats recent measure-
ment technologies on array antennas. Calibration methods
of array antennas themselves and various measurement tech-
niques using array techniques for wireless systems are de-
scribed.

2. Computational Electromagnetics for Large-Scale
Array Antennas

The field of computational electromagnetics (CEM) has at-
tracted a great deal of attention in the last few decades in
Japan, because there has been a strong demand from the
Japanese electric and electronics industry for devolving var-
ious types of antennas to support the innumerous wireless
systems which are keeping continuous evolution. In the early
stage of the CEM research, a satisfied numerical analysis was
only limited to the conducting and electrically small anten-
nas. Numerical analysis for more and more complex antenna
geometries and scattering dielectric bodies has become avail-
able from 1990s, because of the rapid development of the
finite difference time domain (FDTD) method power by ef-
ficient absorbing boundary conditions [1]–[5]. Among the
numerous publications on antenna modeling by the FDTD,
[1] was one of the earliest publications, demonstrating the
input impedance and gain of a monopole antenna on a con-
ducting box. Since then, the techniques of FDTD has been
largely improved and enhanced so that it is capable of dealing
with large-scale problems, especially with the radiation and
scattering of large-scale array antennas and electromagnetic
scatterers. For example, the beam steering characteristics
of a large-scale array antennas consisting of cavity-backed
slot antenna elements were analyzed by the FDTD to take
into account the feeder geometry and phase shift [6], [7].
The FDTD, hybridized with the method of moments (MoM)
and high frequency approximations was applied to numer-
ically analyze the indoor propagation where tens of cubic
scatterers between transmitting and receiving antennas were
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modeled to investigate the effect of these scatterers on the
channel capacity in indoor environment [8], [9]. Nowadays,
the FDTD modeling becomes more and more complicated,
and the model size becomes larger and larger because more
and more powerful computers and efficient algorithms are
developed continuously.

Some MoM based fast algorisms such as the fast mul-
tipole method (FMM) [10], [11] and the characteristic basis
function method (CBFM) [12] have been developed, demon-
strating that the computational cost of the MoM can be
largely reduced. Various large-scale problems can be solved
using a combination of the FMM and CBFM [13], [14].
However, because the FMM and CBFM include many pa-
rameters to speed up the numerical analysis, it is still a
challenging work to find a relation between these parame-
ters and computation cost. Konno et al., have derived the
computational cost of the FMM and CBFM analytically and
demonstrated that the computational cost of the FMM de-
pends on the shape and dimensions of analysis model while
that of the CBFM does not [15], [16]. It was also found
that the iterative algorithm is very effective in solving the
impedance matrix equation, which is very time-consuming
process in the MoM analysis of large-scale array antennas. It
was found that the computation cost can be reduced greatly
for the array antenna analysis if the impedance matrix is de-
composed into a number of sub matrices, which describe the
self and mutual impedances between the groups of the array
[17]. The algorithm can be applied to the sub domain MoM
with a fast convergence if the grouping technique is properly
used [18]. Furthermore, based on the iterative technique,
a method using a sub-array preconditioner to accelerate the
convergence of conjugate gradient (CG) iterative solver in
the FMM and fast Fourier transform (FMM-FFT) was pro-
posed for analyzing a large-scale periodic array antenna with
array elements of arbitrary geometry [19].

An approximate method based on statistical approach
was studied in [20] to analyze a huge-scale periodic array
antenna supposed to be composed of millions of array el-
ements. Recently, researches on developing algorithms to
make maximum use of potential ability of computers for
large-scale problems were reported [21], [22].

The great progress in the CEM research has provided
a solid foundation and effective tools for the researches on
millimeter wave antennas, wireless systems as well as an-
tenna and propagation measurements, which are introduced
in the following sections.

Nowadays, most of the antennas for small electric de-
vices are closely integrated with the wireless devices and
systems. In order to take into account the effect on the an-
tenna performance, such as the EM scattering and interfer-
ence, temperature variation caused by these wireless devices
and systems, it is required to model both the antennas and
the devices, systems, and even the propagation environment
in terms of EM radiation, scattering, and thermos diffusion.
This requirement caused a great attention and hot topics in
the CEM research to solve the multiscale and multiphysics
problems.

Fig. 1 Flow for realization of an array antenna.

3. Millimeter-Wave Band Array Antennas

3.1 Basic Considerations

Figure 1 summarizes the flow for realization of an array an-
tenna. The antenna specifications such as gain, beamwidth,
sidelobe level, reflection, and the bandwidth convert to the
array parameters such as the number and spacing of the el-
ements, the excitation distribution, the type of the feed, and
the type of the excitation. For the realization of an array
antenna, the selection and the combination of the feedline,
the elements, the transition, the material, and the fabrication
techniques are important.

The following considerations are required especially
in the millimeter-wave band. The electromagnetic wave ab-
sorption by vapor and oxygen is significant in the millimeter-
wave band. There are various ways to compensate the ab-
sorption by antenna gain, antenna efficiency, and transmis-
sion power. The antenna gain can be increased simply by
making the size of antenna apertures or the number of el-
ements in array antennas larger, in comparison with other
methods. An array antenna consists of a feed line and ra-
diating elements. Careful evaluation of the combination of
the two is important to reduce losses. A planar radiating
element such as a patch antenna is preferable for a planar
feed line like a microstrip line, while an aperture such as a
slot antenna is suitable for a waveguide that is a metal pipe
confining an electromagnetic wave. The bandwidth of a
series-fed array antenna is dominated by the long-line effect
of the feed line, and to increase the bandwidth, partial or full
corporate feed is introduced. The loss reduction of the feed
line is important to achieve high antenna efficiency. Further,
for the millimeter-wave band, antenna characteristics such
as radiation pattern, gain, and reflection as well as the con-
nection with an RF circuit, have to include an evaluation of
the permittivity and conductivity of the materials used in the
antenna fabrication.

3.2 Survey of Current Technologies

After discussing the basic considerations for realizations of
array antennas in the millimeter-wave band in the previ-
ous sub-section, this sub-section surveys their current tech-
nologies on microstrip array antennas, waveguide slot array
antennas, connections between antenna and RF circuit, eval-
uations of the permittivity and conductivity of the materials,
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beam-switching circuits, and fabrication techniques.
Microstrip array antennas fed by microstrip lines were

developed for automotive radars [23], [24], where a simple
feed structure was introduced by placing the feed line and
the radiating elements in the same substrate. A multilayer
parasitic microstrip antenna array was discussed on polyte-
trafluoroethylene (PTFE) substrate [25], where the multilayer
parasitic structure would increase the antenna size without
feed lines. An array of Fermi antennas was applied to imag-
ing because of its broadband characteristics [26]. Slot array
antennas on the broad-walls [27], [28] or the narrow-walls
[29] on hollow waveguides give high antenna efficiency be-
cause of their low transmission loss, however the bandwidth
becomes limited due to long line effects. Slot array antennas
fed by a laminated-waveguide [30] or a substrate-integrated-
waveguide [31] were developed because of the simplicity
of print-circuit-board fabrication techniques. A hollow-
waveguide full-corporate-feed slot array antenna provides
both high antenna efficiency and wide bandwidth [32]. Ra-
dial line slot antennas were discussed because of the simple
and light-weight structure [33], [34]. Rectangular parallel
plate slot array antennas fed by post-wall waveguides are
provided [35], [36] and the addition of an air layer in low
temperature co-fired ceramic (LTCC) parallel plates reduces
both the equivalent dielectric constant and the transmission
loss. An array antenna introducing metamaterial structure
was also investigated, however the loss here is generally large
[37].

A low-loss connection between antenna and RF cir-
cuit is important. Various types of transitions between a
microstrip line and a hollow or post-wall waveguide were
proposed [38]–[41]. Investigation of beam-switching cir-
cuits to increase the functionality of array antennas and also
to mitigate the signal processing such as the Butler matrix
is required for low-loss connections with an array antenna
for multi-beam operation [42], [43]. Knowing and mea-
suring the permittivity of dielectric and conductivity values
of metal are important to evaluate the loss quantitatively
[44], [45]. Various types of fabrication techniques such
as post-wall waveguides [46], laminated waveguides [47],
injection molding [48], [49] and diffusion bonding of lam-
inated plates [50] have been discussed to become able to
realize waveguide slot array antennas.

3.3 Future Prospects of Millimeter-Wave Band Array An-
tennas

This section describes the future prospects related to
millimeter-wave band array antennas. The simple prospect is
to increase the operating frequency. Electromagnetic-wave
operation would be identical for the same electrical size nor-
malized by wavelength in the lossless case. However, mate-
rial constants such as permittivity, permeability, and conduc-
tivity limit the operating frequency and the antenna electrical
size. Improvements in antenna fabrication techniques such
as 3D printing can be expected to play a role here. 3D print-
ing can make complicate waveguide structures seamlessly.

Surface roughness could make loss, however, which does
not affect significantly in 15 GHz-band waveguide 8x8-slot
array antennas with antenna efficiency of 90% in present
[51]. Both loss reduction of the material itself and rough-
ness reduction of the metal surface in the fabrication are
important. Beam-switching circuits could be applied to or-
bital angular momentum communication and LOS-MIMO to
increase throughput. An array antenna with a large number
of elements can create a volume with uniform field inten-
sity in the non-far region, which could develop into a com-
munication method different from the conventional use in
point-to-point, or point-to-multipoint communication. The
loss reduction of the beam-switching circuits is also impor-
tant. Presently single-layer hollow-waveguide 8-way Butler
matrix gives small loss of 0.25 dB in measurement in the
22 GHz band [42].

4. Spatial Signal Processing Using Array Antennas

4.1 History of Array Antennas with Signal Processing

In recent years, directional pattern control techniques includ-
ing spatial signal processing technologies for land mobile
communication and terrestrial broadcasting has been devel-
oped. Figure 2 shows the history of array signal processing
technologies. In this chapter, array signal processing for
wireless communication system developed in Japan is intro-
duced with Fig. 2. Here, we call the system which treats
single information stream as ‘Adaptive Array’. On the other
hand, we call the system which treats plural one as ‘MIMO
system.’

4.1.1 Adaptive Array

Directional patterns of array antennas can be controlled by
weighting coefficients and combining the weighted signals.
Signal processing antennas where the coefficients are adap-
tively controlled are called “Adaptive arrays” [52]–[55]. A
number of adaptive algorithms for controlling the weight co-
efficients were developed in the 1960s, however, most were
proposed to counter jamming of radar systems. In the pe-
riod, main purpose of the signal processing was interference

Fig. 2 History of array signal processing technologies.
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suppression and maximizing SIR.
Many kinds of adaptive arrays for land mobile commu-

nication were developed to counter co-channel and multi-
path interference since 1980s in Japan. The code division
multiple access (CDMA) and orthogonal frequency divi-
sion multiplexing (OFDM) transmission schemes were in-
troduced in commercial wireless communication systems
around 2000. Adaptive arrays for the CDMA and OFDM
transmission schemes were also developed to improve the
reception quality of wireless communications [55]–[58].

Adaptive arrays for OFDM transmission are categorized
in two typical configurations [59]–[62]. One is a Pre-FFT
type adaptive array that was first proposed for OFDM trans-
mission. Received signals are weighted and combined first,
and then the combined signal is separated into the respec-
tive subcarriers by a fast Fourier transformer (FFT). In this
configuration, a usual OFDM receiver can be utilized and
‘diversity gain’ is obtained in usual situation; however, the
performance is degraded by multi-path waves when the delay
is beyond the expectation. Pre-FFT type adaptive array is
one of an important configuration to reduce A/D converter in
massive MIMO system, which is introduced in later section.

The other is a Post-FFT type adaptive array. Received
signals of several antenna elements are separated into subcar-
riers by FFT respectively, and then the signals are weighted
and combined. The diversity gain and an effect of multi-
path combining are obtained by this configuration. Several
FFT processors are required in the Post-FFT type adaptive
array, however, the performance of that is superior to the
Pre-FFT type. The cost of digital signal processing has de-
creased in recent years and today the Post-FFT type adaptive
array is used in mobile reception system for terrestrial digital
broadcasting.

4.1.2 MIMO Systems

Since weighting coefficients of the MIMO system are con-
trolled according with the radio propagation environment,
measuring and modeling of the radio propagation environ-
ment (the MIMO channel) is very important. Research on
MIMO channel modeling has advanced greatly in the 2000s
[63]–[65]. An appropriate weighting for the whole of the
frequency band is difficult in broadband systems because the
MIMO channel in multi-path environments depend on the
frequency. Multiple narrow band subcarriers are used in
OFDM transmission systems, and the weighting for MIMO
transmissions can be controlled in the respective subcarri-
ers. Broadband MIMO communication can be realized by a
combination of MIMO and OFDM transmission schemes.

In cellular mobile communication, multiple user termi-
nals (UT) access a single base station (BS). (A UT access
plural BS in coordinated multi-point system (CoMP)). To
save the costs of UT, a large array antenna has been proposed
for the BS allowing fewer antenna elements to be assigned
on the UT. This novel MIMO system concept is termed a
“massive MIMO” [66], [67], and both computer simulations
and experimental investigations have been conducted. The

massive MIMO scheme is expected to be a key technology
that will enable realization of next generation high speed
wireless communication systems.

4.1.3 Remote Sensing and DOA Estimation

The array antenna technology is also utilized in the fields of
measurement and monitoring. One useful technology here
is “Aperture synthesis.” In aperture synthesis, one antenna
element is used for measurements and the measurements are
repeated with the location changed, then by combining much
data in off-line procedures, it acts as a virtual large array. Ap-
plication of “aperture synthesis” technology include remote
sensing for monitoring the whole of the earth which utilizes
the measured data gathered by flying vehicles and orbiting
satellites [68].

A further application of array antennas is the analysis
of radio propagation. To analyze the propagation in mobile
communication environments, algorithms to estimate the di-
rection of arrival (DOA) have been developed. In recent
years, a super high resolution technique using eigenvalue
decomposition or recursive calculations have also been de-
veloped [69], [70].

4.2 Future Prospects for Spatial Signal Processing in Wire-
less Communications

The present situation of wireless communication systems
could not be predicted because the evolution has been very
fast. It is also hard to predict the situation of the future,
however, we will attempt to imagine what future wireless
systems that use array signal processing efficiently could be
like.

Figure 3 is a conceptual image of such a future wire-
less system. It has been posited that the key technology
for realizing high speed communication is the MIMO trans-
mission technology. In the future, this technology would
be applied to satellite communications, terrestrial commu-
nications, and indoor communications. Especially, MIMO
satellite communications will be realized by using a multi-
tude of satellites. It is preferable that the user terminal cost
is low and the number of antennas at the user terminal would

Fig. 3 Conceptual image of a future wireless system.
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be small in the first stages. In the further future, for exam-
ple in 30 years, fully developed MIMO systems using large
arrays for both transmission and reception would be realized
by utilizing high frequencies. To speed up the realization
of high speed wireless communications, a range of MIMO
technologies including Multi-hop MIMO, Multi-site MIMO,
wearable MIMO, and others would be developed.

5. Measurements Using Array Antennas

Research on the measurement technologies for various an-
tennas has been widely carried out [71]. In this section, we
focus on calibration of array antennas, over-the-air method,
fast evaluation of mobile devices MIMO propagation for
various applications, virtual array methods as array mea-
surement technologies developed in Japan.

5.1 Calibration Techniques of Array Antennas

Array calibration is the key technology for various wire-
less systems (DOA, radar, MIMO, etc.) mentioned above
to reduce measurement errors because the employed array
antenna has mutual couplings [72]. The rotating element
electric field vector (REV) method has been developed as a
practical calibration technology for a phased array antenna,
that can measure both amplitude and phase of excitation by
only the amplitude receiver [73]. Also, a decoupling method
to reduce coupling, matching loss, and pattern distortion due
to mutual coupling has been studied [74]. For the technolo-
gies, there is the decoupling method with multi-port con-
jugate matching and bridge-susceptance [75]. Wide band
decoupling circuits have been designed by using short stubs
for mobile terminal array antennas [76]. A MIMO antenna
decoupling method using mutual admittance without phase
shifter and matching circuit has also been studied [77].

5.2 Over-the-Air Measurements

Fading wave in multi-path environments is the most im-
portant barrier to be overcome for mobile communications.
Conventionally a fading simulator has been employed to con-
nect two diversity ports of equipment directly during tests
via cables. However, a spatial fading generator over the air
(OTA) without cable connections via array elements would
be attractive for estimates of base station digital beam form-
ing (DBF) array antennas. In these situations, a number of
fading generators using array techniques with spatial spread
characteristics have been proposed. A novel type of fading
generator using rotating scattering array objects was devel-
oped for massive DBF array antennas and MIMO antennas
[78]. The generator is a passive device that can be used for
both Tx and Rx using radio wave scattering characteristics
and has a very simple structure. An active type spatial fading
generator has been studied for handy phone antennas using
phase shifters and multi-probes [79]. These spatial fading
generators with high performance specifications and multi-
function MIMO-OTA estimation systems were proposed and

developed by many researchers worldwide [80], [81].

5.3 Fast Measurement of Mobile Devices

Radiation efficiency is also one of the most important pa-
rameters to evaluate the small antennas used in mobile de-
vices. However, the efficiency measurement is time con-
suming because a 3-dimentional scan is needed, and many
simultaneous measurement methods utilizing array antennas
and scatter objects were proposed to overcome this problem
[82]–[84]. Since it usually takes time of several tens of min-
utes to measure the total radiated power by using the power
integration method, much effort has gone into reducing the
measurement time [85]. A measurement method using a
modulated probe array technique was proposed for the fast
measurement of radiated power [86]. The accuracy of an-
tenna measurement is usually degraded by scattering from
the feed cables of probe antennas, especially the multi anten-
nas are used as the probes in the measurement. This problem
can be overcome by using electric/optical (E/O) array sen-
sors. There has been many researches on how to improve
the sensitivity and stability of the E/O array sensors as the
antenna probes [87]–[90]. The SAR measurement is impor-
tant to evaluate the electromagnetic exposure to the human
body caused by mobile devices. An accurate and fast SAR
measurement system has been developed using O/E probe
array [91].

5.4 MIMO Propagation for Various Applications

Array techniques are also very useful for propagation for
various wireless applications. A number of MIMO propa-
gation research studies have been reported recently as many
radio systems have adopted MIMO technologies [92], [93].
The MIMO technique can be applied to communications
and sensing or radar systems that are non-communicative,
by employing MIMO propagation characteristics [94], [95].
There is also a scheme for secret key agreement based on
radio propagation characteristics using array antennas that
have been developed as a novel approach to this application
[96].

5.5 Measurements Using Virtual Array

The synthetic aperture array (virtual array) technique can
be applied to not only radar systems mentioned above but
also antenna and radio propagation measurements for mo-
bile communication systems. The far field pattern of a 1-
dimensional long antenna such as a base station antenna is
commonly measured in the far field range or in the very near
field range. However, the far field pattern and gain can be
measured at the middle range by simple calculations using
a synthetic aperture [97]. As this method has the practical
of using ordinary equipment for far field pattern measure-
ment systems without special attachments, the method is
commonly employed for R&D tests and inspections. This
method can also be widely applied to measure special and
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temporal propagation profiles in multi-path environments.
In general, the rotating measurement method using a mono
directional antenna such a horn antenna is widely used for
DOA estimates. The method using a synthetic aperture sets
the mono directional antenna not at the center of the turntable
but at a point which is offset by several wave lengths [98].
The DOA profiles can be obtained with high resolution by
using calculations similar to those in reference [97] when
propagation environments are stable.

6. Conclusions

Recent technology and the future prospects with compu-
tational electromagnetics, millimeter-wave band operation,
spatial signal processing, and measurements in arrays an-
tenna engineering have been reviewed and discussed. New
numerical techniques need to be developed for multiscale
and multiphysics problems. Fabrication techniques need to
be developed to realize millimeter-wave band array antennas.
A wide range of MIMO techniques have to be developed to
realize future high-speed wireless communications. Novel
multi-channel measurement techniques will be required in
the future.
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