Mesh-Free Modeling of Two-Dimensional Infinite Periodic Structure Using Green's Function for Method of Moments

Keisuke Konno^{1*}, Nozomi Haga², Jerdvisanop Chakarothai^{3,4}, and Qiang Chen¹

Department of Communications Engineering, Graduate School of Engineering, Tohoku University, Japan
 Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Japan
 National Institute of Information and Communications Technology, Japan

⁴ National Physical Laboratory, UK

* Corresponding author, email: keisuke.konno.b5@tohoku.ac.jp

Abstract—This paper demonstrates a mesh-free modeling method of two-dimensional infinite periodic structure for method of moments (MoM). The mesh-free modeling method deals with the two-dimensional infinite periodic structure as a surface whose reflection coefficient is numerically known. In the same manner as a layered media Green's function (LMGF), electromagnetic response of the two-dimensional infinite periodic structure is formulated by plane wave expansion. Numerical simulation is performed and radiation performance of an array antenna over the two-dimensional infinite periodic dipole array is demonstrated.

Keywords—Method of Moments, Periodic Structure, Green's Function

I. Introduction

Modeling of a large-scale scatterer during numerical simulation is a classic but challenging problem for MoM [1]. One intuitive approach for modeling the large-scale scatterer is to follow MoM and divide it into mesh of equivalent current [2]–[4]. This approach directly deals with the large-scale scatterer as an unknown current but the number of unknowns (i.e. number of mesh) increases as the size of the scatterer increases. As a result, this approach suffers from large computational cost and acceleration techniques such as supercomputers or fast MoM are necessary [5]–[9].

One of the elegant approaches to model an infinite dielectric slab and ground plane is to model them using reflection/transmission coefficients [10]. This approach is computationally efficient because the infinite dielectric slab and ground plane are modeled in a mesh-free manner. For example, it is well-known that MoM with the LMGF follows this manner and antennas over the layered media is efficiently analyzed because antenna itself is only divided into mesh of equivalent current whereas the layered media is not [11]–[14]. However, applicability of this approach is limited to ideal scatterers whose reflection/transmission coefficients are analytically expressed.

On the other hand, our group has proposed a meshfree modeling method of two-dimensional infinite periodic structures [15]–[17]. The proposed method deals with electromagnetic response of the two-dimensional infinite periodic structures using their reflection coefficients. The proposed method is based on semi-analytical formulation, i.e. analytically expressed Green's function combined with numerically obtained reflection coefficients. Therefore, the proposed method is applicable to numerical analysis of antennas over the two-dimensional infinite periodic structures composed of arbitrary shaped scatterers once it is combined with MoM.

In this paper, the mesh-free modeling method of twodimensional infinite periodic structures is introduced to MoM. Performance of the MoM is demonstrated via numerical analysis of an array antenna over the two-dimensional infinite periodic array.

II. CONCEPT

Concept of the mesh-free modeling method is shown in Fig. 1. Firstly, the reflection coefficients of the two-dimensional infinite periodic structures are obtained using Floquet's theorem. Mutual impedance between source and observation points is analytically formulated in the same manner as the LMGF except for reflection coefficients that are substituted numerically. Finally, a matrix equation is numerically obtained by MoM and is solved. Size of the matrix equation (i.e. number of unknowns) obtained by MoM with the mesh-free modeling method is small because source and observation points (i.e. antennas) are only divided into mesh of equivalent current here.

III. NUMERICAL SIMULATION

Fig. 2 shows directivity of the dipole array over twodimensional infinite frequency selective surface (FSS). It is found that the directivity of MoM with the proposed mesh-free modeling method agrees well with directivities of conventional MoM (Full-wave) except for fluctuation. The fluctuation stems from finite size of the FSS and the directivities of conventional MoM seem to approach that of

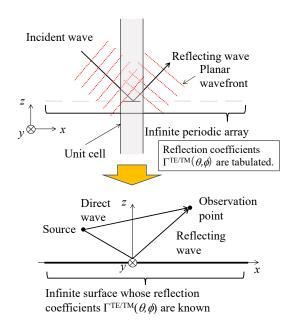


Fig. 1. Concept of the mesh-free modeling method .

MoM with the proposed mesh-free modeling method as the size of finite FSS becomes large. The number of unknowns 6015 for conventional MoM (Full-wave, 20×20) whereas it is only 15 for the MoM with the proposed meth-free method. Resultant CPU time was approximately 7200 sec. for conventional MoM and was less than one second for the MoM with the proposed mesh-free method. Therefore, it can be concluded that the MoM with the proposed mesh-free method is computationally efficient for numerical analysis of antennas over large periodic structures.

IV. CONCLUSION

This paper presented the mesh-free modeling method for the two-dimensional infinite periodic structures and applied it to MoM. Results of numerical simulation demonstrated that the proposed MoM works well and is computationally efficient in comparison with conventional MoM.

ACKNOWLEDGMENT

This work was financially supported by JSPS KAKENHI Grant Number 22K04061. Discussions with the members of the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University, were helpful for this work.

REFERENCES

- R. F. Harrington, Field Computation by Moment Methods, Macmillan, New York, 1968.
- [2] J. H. Richmond and N. H. Geary, "Mutual impedance of nonplanarskew sinusoidal dipoles," IEEE Trans. Antennas Propag., vol. AP-23, no. 3, pp. 412-414, May 1975.
- [3] C. W. Chuang, J. H. Richmond, N. Wang, and P. H. Pathak, "New expressions for mutual impedance of nonplanar-skew sinusoidal monopoles," IEEE Trans. Antennas Propag., vol. 38, no. 2, pp. 275-276, Feb. 1990.

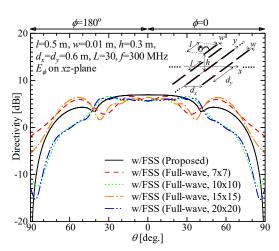


Fig. 2. Directivity of a dipole antenna over two-dimensional infinite FSS composed of dipole elements (*L* is number of quadrature for spherical integral for calculation of self/mutual impedance.).

- [4] S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., vol. AP-30, no. 3, pp. 409-418, May 1982.
- [5] K. Konno, Q. Chen, K. Sawaya, and T. Sezai, "Analysis of huge-scale periodic array antenna using impedance extension method," IEICE Trans. Commun., vol.E92-B, no.12, pp.3869-3874, Dec. 2009.
- [6] K. Konno, Q. Chen, and K. Sawaya, "Quantitative evaluation for computational cost of CG-FMM on typical wiregrid models," IEICE Trans. Commun., vol.E93-B, no.10, pp.2611-2618, Oct. 2010.
- [7] K. Konno, Q. Chen, K. Sawaya, and T. Sezai, "Statistical analysis of huge-scale periodic array antenna including randomly distributed faulty elements," IEICE Trans. Electron., vol.E94-C, no.10, pp.1611-1617, Oct. 2011.
- [8] K. Konno, H. Katsuda, K. Yokokawa, Q. Chen, K. Sawaya, and Q. Yuan, "Quantitative study of computing time of direct/iterative solver for MoM by GPU computing," IEICE Commun. Express, vol. 2, no. 8, pp. 359-364, 2013.
- [9] K. Konno and Q. Chen, "The numerical analysis of an antenna near a dielectric object using the higher-order characteristic basis function method combined with a volume integral equation," IEICE Trans. Commun., vol.E97-B, no.10, pp.2066-2073, Oct. 2014.
- [10] W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press, NY 1995.
- [11] W. C. Chew, J. L. Xiong, and M. A. Saville, "A matrix-friendly formulation of layered medium Green's function," *IEEE Antennas Wireless Propag. Lett.*, vol. 5, pp. 490-494, 2006.
- [12] Y. P. Chen, W. C. Chew, and L. Jiang, "A new Green's function formulation for modeling homogeneous objects in layered medium," *IEEE Trans. Antennas Propag.*, vol. 60, no. 10, pp. 4766-4776, Oct. 2012.
- [13] K. Konno, Q. Chen and R.J. Burkholder, "Fast Computation of Layered Media Green's Function via Recursive Taylor Expansion," *IEEE Antennas and Wireless Propag. Lett.*, vol. 16, pp.1048-1051, 2017.
- [14] K. Konno, Q. Chen and R.J. Burkholder, "Numerical Analysis of Large-Scale Finite Periodic Arrays Using a Macro Block-Characteristic Basis Function Method," IEEE Trans. Antennas Propag., vol. 65, no. 10, pp.5348-5355, Oct. 2017.
- [15] K. Konno, N. Haga, J. Chararothai, Q. Chen, N. Nakamoto, and T. Takahashi, "A Novel Method of Moments for Numerical Analysis of Antennas Over 2-D Infinite Periodic Array of Scatterers," IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 50-60, Jan. 2024.
- [16] K. Konno and Q. Chen, "Efficient Modeling of Two-Dimensional Infinite Periodic Structures and Its Application to Method of Moments," Proc. ACES-China, pp. 1-3, Aug. 2024.
 [17] K. Konno and Q. Chen, "Numerical Analysis of Finite Antennas
- [17] K. Konno and Q. Chen, "Numerical Analysis of Finite Antennas Over Two-Dimensional Infinite Periodic Structures Using Method of Moments," Proc. ICEAA2024, p. 43, Sept. 2024.