
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Capacity-Fairness Tradeoff for Optimal Power 
Allocation in Cluster-wise MU-MIMO System 

Sijie Xia†,1   Chang Ge†,1   Qiang Chen†,‡,2   Fumiyuki Adachi‡,2 
†  Department of Communications Engineering, Graduate School of Engineering, Tohoku University 

6-6-05 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579 Japan  
‡  International Research Institute of Disaster Science, Tohoku University 

468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan 

E-mail: 1 {xia.sijie.p2, ge.chang.q2}@dc.tohoku.ac.jp, 2 {qiang.chen.a5, fumiyuki.adachi.b4}@ tohoku.ac.jp 

Abstract— The cluster-wise multi-user multi-input multi-
output (MU-MIMO), division of the ultra-dense network in the 
beyond fifth-generation (B5G) system into several small-scale 
MU-MIMO, is an effective way to reduce the computational 
complexity of the system operations. Reasonable power 
allocation is excepted for the improvement of system 
performance by adjusting the inter-cluster-interference. In this 
paper, we consider an optimal power allocation (OPA) method 
to realize the flexible tradeoff between sum capacity 
maximization and user fairness maximization while 
guaranteeing the minimum user capacity under the total 
transmit power constraint to meet the needs of different 
application scenarios. The simulation results verify that the 
proposed OPA method can effectively adjust the tradeoff 
between sum capacity and user fairness. 

Keywords—Beyond 5G, Distributed antenna system, MU-
MIMO, User-clustering, Power allocation 

I. INTRODUCTION 
Since the mobile data traffic is ever-increasing, the 

massive multi-input multi-output (MIMO) becomes the key 
technology for mobile communication network densification 
in fifth-generation (5G) and beyond fifth-generation (B5G) 
systems to guarantee the quality of service (QoS) for a large 
number of users. Considering that the millimeter wave band is 
utilized to provide wider transmission bandwidth, compared 
with the centralized massive MIMO with large-scale array 
antennas co-located at a specific place, the distributed massive 
MIMO with a large number of antennas deployed in different 
positions can effectively avoid the blockage problem caused 
by the rectilinear propagation characteristics of the millimeter 
wave signals and provide a higher spectrum efficiency [1,2]. 

Additionally, the exorbitantly high computational 
complexity required for large-scale massive MIMO 
communication is unacceptable, so it is difficult to apply it to 
practice. Hence, we introduce the clustering method to solve 
the complexity problem by dividing the users and their 
associated antennas in each base station (BS) area (called the 
cell) into several clusters to perform cluster-wise multi-user 
MIMO (MU-MIMO) parallelly. However, when all clusters in 
the cell share the same radio resource, inter-cluster 
interference (ICI) limits the performance of the system. 
Therefore, in order to effectively mitigate the ICI, we consider 
an optimal power allocation (OPA) method. In our previous 
work [3], a sum capacity maximization-based OPA was 
proposed. Then, we realize that not only the sum capacity but 
also the user fairness is a significant system indicator for some 
application scenarios. And the improvement of sum capacity 
and user fairness are often contradictory. Consequently, in this 
paper, we propose an OPA method that can flexibly trade off 
the sum capacity maximization and user fairness 

maximization while guaranteeing the minimum user capacity 
requirement under the total transmit power constraint. 
Specifically, we utilize the well-known weighted sum method 
[4,5] in multi-objective optimization to realize the tradeoff 
between sum capacity and user fairness by introducing a 
tradeoff coefficient to combine the two objectives into one, so 
that it can be solved by the effective sequential quadratic 
programming (SQP) method [5,6] as a single-objective 
optimization.  

The rest of this paper is organized as follows. In Section 
II, we introduce the system model of cluster-wise distributed 
MU-MIMO in a single cell. In Section III, we describe the 
proposed sum capacity and user fairness tradeoff-aware OPA 
method. In Section IV, the computer simulation results show 
the validity of proposed capacity-fairness tradeoff-aware OPA 
method. In the final Section V, we give some conclusions and 
implications. 

II. SYSTEM MODEL 
For simplicity, in this paper, we consider a single cell in 

the cellular network to investigate the capacity and fairness 
tradeoff in cluster-wise distributed MU-MIMO system. U 
single-antenna users communicate with the BS through A 
distributed antennas which are connected to the BS via optical 
mobile fronthaul, and these users and antennas are exclusively 
divided into K clusters in order to reduce the computational 
complexity of the system to an acceptable level. Users and 
antennas are assumed to be randomly distributed in the cell, 
but in order to provide uniform QoS, a certain antenna 
distance (AS) is maintained between antennas so that antennas 
are approximately regularly distributed as much as possible.  

Considering the mobility and aggregation of users, in the 
case of sufficient antenna deployment in the cell, we 
recommend a user-based clustering method based on their 
location information. After determining the user clustering, 
we further associate the adjacent antennas of each user into 
their cluster through the location relationship between users 
and antennas to perform the cluster-wise MU-MIMO 
communication. As a result of user-clustering and antenna 
association, the number of antennas in each cluster (Ak) is 
equal to or larger than the number of users in each cluster (Uk) 
to meet the MU-MIMO signal processing condition (i.e., Ak 
� Uk). It is worth noting that assuming the same and limited 
multiplexing capacity in each cluster, we utilized the called 
modified K-means method which adds a number restriction of 
cluster members for each cluster to the classic K-means 
method [7,8]. 

An example of the cluster structure constructed inside a 
square-shaped single cell is shown in Fig. 1. Here, a 
normalized 1×1 square-shaped cell range is considered for 
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simplicity and can be applied to any physical scale. We 
assume that U=64, A=2×U, AS=0.0625, and when assuming 
the number of users in each cluster shall not exceed 8, 
K=64/8=8. In Fig.1 triangles, circles, and cross marks indicate 
the coordinates of the user location, antenna location, and the 
centroid of the cluster, respectively. In addition, the solid and 
dashed lines in the figure show the cluster association of users 
and the antennas, respectively. We can see that the clusters are 
formed with the same number of users and that antennas are 
associated with user clusters according to the user cluster 
topology. The members of different clusters are represented 
by different colors, but it should be noted that the same radio 
resource is shared in all clusters in the cell, thereby producing 
the ICI. 

 
Fig. 1. An example of cluster structure after antenna assignment in a square-

shaped single cell 
(U=64, A=2×U, AS=0.0625, K=8). 

Subsequently, with the assumption of perfect channel state 
information at both user and BS side, zero-forcing (ZF) [9] 
based MU-MIMO transmission is implemented in each cluster 
separately to eliminate the inter-user-interference inside the 
cluster. The downlink channel matrix between the ukth user in 
the kth cluster and all the antennas in the mth cluster is 

represented by , 1 , , ,k k k

TT T T
k m m u m U m =  H h h hK K and 

the precoding matrix for the kth cluster can be expressed as 
†

, 1[ ]
k k kk k k u U= =W H w w wK K , where A† denotes 

the Moore–Penrose inverse of matrix A. With transmit power 
for the ukth user Puk, we describe the received signal of the 
ukth user in the kth cluster as  
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Then, by assuming the power spectral density of user signal 
and that of the additive white Gaussian noise (AWGN) have 
zero mean and unity variance, we further derive the capacity 
for the ukth user in the kth cluster as 
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where the capacity expression of the uplink according to the 
symmetry of the uplink and downlink. It should be noted that 
the transmission power Puk is independent in the uplink and 
downlink, and is the same only under the condition of equal 
power allocation (EPA). 

III. CAPACITY-FAIRNESS TRADEOFF-AWARE OPA METHOD 
In order to reasonably control the transmission power of 

each user in the system to suppress ICI and improve the 
performance of the system, we propose the capacity-fairness 
tradeoff-aware OPA method. Firstly, user capacity and sum 
capacity are often the criteria to evaluate the performance of 
the system. Therefore, in [3], we proposed an OPA strategy 
based on sum capacity maximization. However, we also note 
that in some application scenarios, user fairness is also an 
indicator that needs to be paid attention to. Therefore, this 
paper makes progress and expansion on the basis of [3] and 
considers the joint maximization of sum capacity and user 
fairness under the condition of ensuring the minimum user 
capacity demand. Specifically, our considered joint 
maximization of sum capacity and user fairness can be 
described as: 
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Here, the sum capacity maximization objective is formulated 
by (3a), and we utilize the well-known Jain’s fairness index 
(JFI) [10] to represent the user fairness objective as in (3b). In 
addition, we fix the total transmit power of the system as the 
product of number of users (U) and a target transmit power for 
each user (P) in (3c). Then, in (3d), all user capacity must meet 
the restriction that are greater than or equal to the minimum 
user capacity (Cmin). 

Because the multiple-objective optimal problem is 
difficult to be solve and the two objectives (3a) and (3b) are 
probably contradictory, we utilize the commonly used 
weighted sum method [4,5] to combine the two objectives into 
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one and transform it into a single-objective optimization 
problem. In this way, by introducing the trade-off coefficient, 
the integrated objective function can be biased between the 
two original objectives. However, different from sum capacity, 
JFI is a unitless variable, and its value range is (0,1], so it is 
necessary to normalize the two objectives when weighting 
them or set an effective trade-off coefficient according to their 
value range difference. However, it is hard to achieve the 
above operations because the value range of sum capacity is 
determined by the user antenna position, clustering results, 
and channel state and it is hard to know exactly. Therefore, we 
equivalently convert JFI into the standard deviation of user 
capacity with the same base unit as the sum capacity. 
Consequently, the maximization of JFI in (3b) changes to the 
minimization of the standard deviation of the user capacity. 
Moreover, in order to effectively adjust the two objectives by 
the tradeoff coefficient α, we multiply the number of users in 
front of the standard deviation to make the value ranges of the 
two objective functions close. So, the capacity-fairness 
tradeoff-aware OPA problem can be modified as 
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  (4)

where α∈[0,1] is the tradeoff coefficient which represents the 
importance of objective, and C is the capacity averaged over 
all users. 

So far, the capacity-fairness tradeoff-aware OPA problem 
of (4) is non-convex, so it is still difficult to solve directly. 
Therefore, we utilize the sequential quadratic programming 
(SQP) method [5,6] to approximate the optimal solution. As 
one of the most effective methods for the nonconvex 
constrained optimization, the essence of SQP is to gradually 
approach the optimal solution of the original problem by 
iterating the appropriate quadratic programming subproblem. 
Specifically, our formulated non-linear programming problem 
in (4) can be expressed in its general form as  

 min ( )

s.t. ( ) 0,
( ) 0,

i

i

f

c i
c i

= ∈

≥ ∈

x
x

x
x

E
I

. (5) 

By approximating the objective function and constraints in (5) 
linearly using Taylor expansion, the SQP method constructs 
the quadratic programming (QP) subproblem, at iteration t, 
given as  

 1min ( )
2
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where d is the search direction, t is the iteration index, G is the 
Hessian matrix (second-order partial derivatives matrix) of 
Lagrange function for (5)), and ∇ denotes the gradient. The 
SQP method solves the subproblems sequentially to 
approximate the optimal solution of the original problem. Our 
proposed SQP method is described in Algorithm 1. 

Algorithm 1: SQP method 

Initialization 

Set iteration index t=0. Choose a starting point x0 and 
approximation Hessian G0. 

Repeat  
Solve the tth QP subproblem (6) to determine the 
search direction dt 

Determine the step size λt to update xt+1=xt+λt 

Update the Hessian matrix Gt+1, by 

 1

T T T
t t t t t t

t t T T
t t t t t

+
= + −

v v G u u G
G G

v u u G u
, (6) 

Where vt=xt+1-xt and ut=∇L(xt+1)-∇L(xt) with L 
denoting the Lagrange function. 

t=t+1 

Until stop criterion 

IV. NUMERICAL RESULTS 
In this section, we demonstrate and discuss the 

adjustability of the proposed weighted sum method based 
capacity-fairness tradeoff-aware OPA method. We carry out a 
Monte-Carlo simulation to obtain the cumulative distribution 
function (CDF) of user capacity, sum capacity, and user 
fairness by randomly changing the user location pattern 1000 
times with a fixed randomly generated antenna location 
pattern. It should be emphasized that although we use standard 
deviation of user capacity to represent user fairness in the 
function composition of the proposed OPA for convenience, 
we still use JFI to measure user fairness when calculating CDF 
results.  

For each user location pattern, user-clustering and cluster-
antenna association are carried out. After the channel decided, 
the user capacity is computed using (2) to obtain the sum 
capacity and user fairness. The MIMO channel is 
characterized by path loss, log-normal shadowing loss, and 
Rayleigh fading. In our simulation, a quasi-static channel 
condition is considered which means we randomly generate 
shadowing and fading channels once when the user location 
pattern changes.  

As a benchmark, we also calculated the results of equal 
power allocation (EPA) case to evaluate the performance of 
the proposed OPA. For EPA case, users are equally assigned 
the transmit power. The transmit power for each user is 
represented by the normalized transmit signal-to-noise ratio 
(SNR) which is defined as the received SNR when the 
transmitter-receiver distance is equal to the side length of the 
normalized 1×1 square-shaped area. In addition, we set the 
initial state for iteration in SQP method to the EPA state and 
if the capacity-fairness tradeoff-aware OPA cannot find a 
feasible solution the EPA state is adopted for the capacity 
calculation.  

TABLE I.  SIMULATION SETTING 

Parameter Value/State 
Number of distributed antennas (A) 128 
Number of users (U) 64 
Number of clusters (K) 8 
Number of times of user location generations 1000 
Path loss exponent 3.5 
Log-normal shadowing standard deviation [dB] 8 
Fading type Rayleigh 

18

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on January 04,2023 at 02:12:49 UTC from IEEE Xplore.  Restrictions apply. 



Transmit SNR per user (P) [dB] 0 
Minimum user capacity (Cmin) [bps/Hz] 0.1 
Starting point of SQP method EPA state 
Tradeoff coefficient (α) 0/0.2/0.4/0.6/0.8/1 

 

The CDF results of user capacity for both downlink and 
uplink with different values of α in the proposed OPA are 
presented in Fig. 2, where the results of the EPA case are 
illustrated by gray lines as a reference. Firstly, we can see that 
compared with the EPA case, the proposed OPA 
commendably ensures the minimum user capacity under any 
value of α. Moreover, the CDF curve changes obviously by 
changing α from 0 to 1, which suggests that adjusting α can 
effectively bias the transmit power allocation toward the 
capacity objective or the fairness objective. In other words, 
our objective function design based on the weighted sum 
method is successful.  

In precise, we note that when α is set as 1, i.e., the objective 
function only considers sum capacity maximization, the 
probability of user capacity restricted to Cmin is highest (over 
20%), and achievable maximum user capacity is much higher 
than that of EPA case on the other hand. This happens because 
the transmit power of users with a poor channel condition 
tends to be allocated to the users with a better channel 
condition to further increase their capacity to maximize the 
sum capacity. This is the same result as the previous single-
objective OPA in [3]. 

On the other hand, when α reduces, the transmit power 
allocation is biased towards high user fairness. Specifically, 
the probability of user capacity becoming equal to Cmin can be 
gradually reduced by reducing α. Moreover, the probability of 
the capacity exceeding a certain high capacity and the 
achievable maximum user capacity can be both reduced. As a 
consequence, higher user fairness is obtained with a smaller α. 
As a result, another extreme case (α=0) meets the user fairness 
maximization objective. 

 
(a) Downlink 

 
(b) Uplink 

Fig. 2. CDF comparison of user capacity with different values of α  
in capacity-fairness tradeoff-aware OPA. 

Then, we investigate the impact of α on two indicators 
(sum capacity and user fairness) intuitively as illustrated in Fig. 
3. Here, the horizontal ordinate and vertical ordinate represent 
the sum capacity at CDF=50% and the user fairness at 
CDF=50%, respectively. From Fig. 3, we can clearly see that 
adjusting α can effectively bias the transmit power allocation 
toward the sum capacity objective or the user fairness 
objective. When α is equal to 0, capacity-fairness tradeoff-
aware OPA considers the user fairness maximization only and 
the sum capacity becomes lowest. On the other hand, by 
increasing α, the user fairness decreases gradually, and the 
sum capacity increases gradually. In addition, we can also see 
from Fig. 3 that when α is equal to 0.8, both the sum capacity 
and the user fairness are improved compared to the EPA case. 
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(b) Uplink 

Fig. 3. Relationship between sum capacity and user fairness with different 
values of α in capacity-fairness tradeoff-aware OPA. 

It can be summarized from Figs. 2 and 3 that the proposed 
capacity-fairness tradeoff-aware OPA method based on the 
weighted sum method can flexibly trade off the sum capacity 
maximization and the user fairness maximization by changing 
the value of α while guaranteeing the minimum user capacity, 
which indicates that the proposed capacity-fairness tradeoff-
aware OPA can be applied to many practical application 
scenarios with a variety of QoS. 

V. CONCLUSIONS 
In this paper, we proposed a capacity-fairness tradeoff-

aware OPA method for the cluster-wise distributed MU-
MIMO system to meet the needs of different application 
scenarios in the B5G systems. We formulated the proposed 
capacity-fairness tradeoff-aware OPA with the minimum user 
capacity guarantee and limited total transmit power constraint 
by combining two contradictory objectives into one based on 
the weighted sum method. Then, we introduced the effective 
SQP algorithm to solve the proposed OPA problem. 

From the Monte-Carlo simulation, we demonstrated that 
the sum capacity and the user fairness can be flexibly traded 
off while guaranteeing the minimum user capacity by 
adjusting the tradeoff coefficient α in the proposed OPA. The 
simulation results also indicated that an appropriate selection 
of α can improve the sum capacity and user fairness 
simultaneously compared with the EPA case. 

In fact, ensuring the minimum capacity requirement of 
users is often a key indicator. However, meeting the minimum 

capacity requirement is closely related to user distribution, 
clustering results, and channel status. In a real environment, 
guaranteeing the minimum capacity may not be possible. How 
to effectively avoid such a situation is left as our future work. 
In this paper, we considered a square-shaped single-cell. In a 
cellular system, the inter-cell interference is produced. An 
extension of our work to the cellular system is also a 
remaining issue. 

ACKNOWLEDGMENT 
A part of this work was conducted under “R&D for further 

advancement of the 5th generation mobile communication 
system” (JPJ000254) commissioned by the Ministry of 
Internal Affairs and Communications in Japan. 

REFERENCES 
[1] F. Adachi, R. Takahashi and H. Matsuo, “Enhanced Interference 

Coordination and Radio Resource Management for 5G Advanced 
Ultra-dense RAN,” 2020 IEEE 91st Vehicular Technology Conference 
(VTC2020-Spring), 2020, pp. 1-5, doi: 10.1109/VTC2020-
Spring48590.2020.9128516. 

[2] J. Joung, Y. K. Chia, and S. Sun, “Energy-efficient, large-scale 
distributed-antenna system (L-DAS) for multiple users,” IEEE J. 
Selected Topics in Signal Processing, Vol. 8, No. 5, pp.954-965, Oct. 
2014. 

[3] S. Xia, C. Ge, Q. Chen and F. Adachi, “Optimal Power Allocation for 
Cluster-Wise Distributed MU-MIMO System,” 2021 IEEE 94th 
Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1-5, doi: 
10.1109/VTC2021-Fall52928.2021.9625493. 

[4] R. Timothy Marler and J. S. Arora, “The weighted sum method for 
multi-objective optimization: New insights”, Struct. Multidiscipl. 
Optim., vol. 41, pp. 853-862, Jun. 2010. 

[5] M R Mili, K A Hamdi, F Marvasti and M Bennis, “Joint Optimization 
for Optimal Power Allocation in OFDMA Femtocell Networks”, IEEE 
Communications Letters, vol. 20, pp. 133-136, Jan. 2016. 

[6] J. Nocedal and S. J. Wright. Numerical Optimization, Second Edition. 
Springer Series in Operations Research, Springer Verlag, 2006. 

[7] P. Bradley, K. Bennett and A. Demiriz, “Constrained K-Means 
Clustering”, Microsoft Research Technical Report, May. 2000. 

[8] S. Xia, C. Ge, Q. Chen and F. Adachi, “Cellular Structuring and 
Clustering for Distributed Antenna Systems,” 2021 24th International 
Symposium on Wireless Personal Multimedia Communications 
(WPMC), 2021, pp. 1-6, doi: 10.1109/WPMC52694.2021.9700460. 

[9] M. Jung, Y. Kim, J. Lee and S. Choi, “Optimal number of users in zero-
forcing based multiuser MIMO systems with large number of antennas,” 
in Journal of Communications and Networks, vol. 15, no. 4, pp. 362-
369, Aug. 2013, doi: 10.1109/JCN.2013.000067. 

[10] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness 
and Discrimination for Resource Allocation in Shared Systems, Digital 
Equipment Corporation,” Technical Report DEC-TR-301, Tech. Rep., 
1984. 

 

Su
m

 c
ap

ac
ity

 @
CD

F=
50

%
 [b

ps
/H

z]

α=0
0.2

0.4

0.6

0.8
1

EPA

20

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on January 04,2023 at 02:12:49 UTC from IEEE Xplore.  Restrictions apply. 


