
Acceleration of Various Direct/Iterative Solvers
for MoM by GPU and Its Computational Cost

Keisuke Konno, Qiang Chen
Department of Communications Engineering

Graduate School of Engineering, Tohoku University
Sendai, Miyagi, Japan
konno@ecei.tohoku.ac.jp

Hajime Katsuda
Wireless Systems Innovation Laboratory
NTT Network Innovation Laboratories

Yokosuka, Kanagawa, Japan

Abstract—Various guidelines for acceleration of MoM by GPU
computing are summarized. Acceleration of direct/iterative solver
for MoM by using GPU is realized. Quantitative study of
computing time shows the performance of each guideline.

I. INTRODUCTION
Method of moments (MoM) is well-known as one of the

effective numerical techniques for the analysis of electric field
integral equation (EFIE) [1]. Because the computing time of
the MoM with conventional direct solver is O(N3) where N
is the number of unknowns, various researches which aim to
save the computing time of the MoM have been carried out.
Iterative solver such as conjugate gradient (CG) method has
been proposed to save the computing time of the MoM [2]. The
order of computing time of the CG method is proportional to
NitN

2 where Nit is the number of iterations. The computing
time of the iterative solver can be smaller than that of the
direct solver when Nit < N . However, it is inevitable that the
solution of the iterative solver includes error due to a tradeoff
between computing time and accuracy.
Recently, graphics processing unit (GPU) has been used as

a powerful device to save computing time of the MoM [3].
The GPU has hundreds of processors and numerical operations
in the MoM can be performed in parallel when the GPU is
applied to the MoM. In previous researches, the computing
time of both direct/iterative solvers in the MoM has been
saved by using the GPU [4], [5]. On the other hand, various
programming guidelines which are suitable for the architecture
of the GPU have been shown to enhance the performance of
the GPU [6], [7]. In addition, how these guidelines affect the
computing time of both direct/iterative solvers in the MoM
has been clarified quantitatively [8].
In the reference [8], conventional direct/iterative solver (i.e.

Gauss-Jordan method, CG method) has only been accelerated
by these programming guidelines. On the other hand, as a
faster direct/iterative solver, conjugate gradient fast multipole
method (CG-FMM) [11] and characteristic basis function
method (CBFM) [13] have been proposed, respectively. The
effect of guidelines shown in [8] to computing time of both
CG-FMM and CBFM has not been evaluated and compared
quantitatively. In addition, it has not been clarified that how
each guideline makes an impact on CG-FMM and CBFM
which have different algorithm.

This paper is enhanced version of reference [8]. In this
paper, at first, various programming guidelines for GPU
computing are briefly reviewed. After that, these guidelines
are applied to in-house code of Gauss-Jordan method, CG
method, CG-FMM and CBFM. The same numerical example
is solved by using these solvers with/without guidelines and
its computing time is compared with each other. All numerical
results in this paper are obtained from codes written in CUDA
(compute unified device architecture) Fortran and GPU is
NVIDIA Tesla C2075.

II. REVIEW OF GUIDELINES FOR FAST GPU COMPUTING

Following three guidelines have been shown to minimize
the computing time of the GPU in [6] or [7].

1. Minimization of data transfer between CPU and GPU
In general, the processing speed of numerical operation by

the GPU is much faster than that by the CPU. On the other
hand, data transfer speed from the global memory of the GPU
to that of the CPU is not so fast. Therefore, data transfer time
can be dominant when frequent data transfer is carried out in
the GPU computing. To maximize the computing speed of the
GPU, it can be said that frequent data transfer between CPU
and GPU should be avoided as long as possible.

2. Coalesced memory access to the global memory of the
GPU
GPU memory consists of global memory, cash and shared

memory. The cash and shared memory have fast data transfer
speed compared with the global memory but the size of cash
and shered memory is small and limited. On the other hand,
the global memory has large size but its data transfer speed is
slow compared with the cash and shared memory. Therefore,
large N×N impedance matrix is stored in the global memory,
when the large-scale problem of the MoM is carried out by
the GPU. Because data transfer speed from processors to the
global memory is slow compared with the processing speed
of the GPU, the number of accesses to the global memory
should be minimized in the MoM. Coalesced memory access
has been recommended as a effective technique to reduce the
number of accesses to the global memory. Processors can get
a number of data from the global memory simultaneously and

16P1-S1EMC’14/Tokyo

Copyright © 2014 IEICE

the number of accesses to the global memory can be reduced
drastically, when the memory access is coalesced. Therefore,
memory access to the global memory of the GPU should be
coalesced to maximize the computing speed of the GPU.

3. The number of threads per block should be a multiple
of 32 [6].
In the GPU computing, numerical operations are executed in

parallel and assignment of numerical operations to processors
is important to save computing time. The minimum unit of
numerical operations executed by processors in GPU is called
as thread and a number of threads is called as block. The
number of threads per block which is assigned to processors
in SM (streaming multiprocessors) can be controlled by users,
where SM consists of many processors and memories. The
maximum number of threads which can be executed in parallel
is 32, because each SM in the GPU of Fermi architecture
has 32 processors. Therefore, the number of threads per block
should be a multiple of 32 to avoid wasting processors.
Due to the limitation of space, details of the above three

guidelines are omitted here. For details of the above three
guidelines, please refer to [6] or [7].

III. DIRECT/ITERATIVE MATRIX SOLVERS FOR MOM

A. Gauss-Jordan Method and CG Method

Gauss-Jordan method is conventional direct solver for
MoM. The Gauss-Jordan method finds inverse matrix by
pivot search and sweeping out. Because frequent access to
the memory which stores impedance matrix is required for
sweeping out, both memory access and data transfer should
be minimized to save computing time.
On the other hand, CG method is one of the iterative

solvers for MoM. The CG method updates approximate
solution by iterative numerical operation including matrix-
vector multiplication. Because matrix-vector multiplication is
most computationally expensive part in the CG method, the
optimum tuning for matrix-vector multiplication by using the
guidelines is effective to save total computing time of the CG
method.

B. CBFM

CBFM is one of the fast MoMs based on direct solver [13].
In the CBFM, the original large matrix equation is divided into
block matrix equations. Characteristic basis function (CBF) is
obtained as a solution of the block matrix equations and the
original large matrix equation is reduced to smaller one by
using the CBFs. The block matrix equation and the reduced
matrix equation are solved by direct solver such as Gauss-
Jordan method. Because the CBFM is based on the Gauss-
Jordan method, the optimum tuning for the Gauss-Jordan
method is also effective to save computing time of the CBFM.

C. CG-FMM

CG-FMM is one of the fast MoMs based on iterative solver
[11], [12]. In the CG-FMM, CG method is combined with
FMM which is based on the addition theorem of the scalar

1.4 10-9
N

3
�

 CPU
 GPU w/o guidelines
 GPU w/guideline 1
 GPU w/guideline 1 and 2
 GPU w/full guidelines

2 10-8
N
3

�

C
o

m
p

u
ti

n
g
 t

im
e

[s
ec

.]

Number of unknowns N

(θ
inc

, φ
inc

)=(30o, 0o)

1.5 10-4
N log N�

10 10 10 10
10

10

10

10

10

10

z y

x
O

φ
inc

θ
inc

k

Einc

Fig. 1. Computing time of Gauss-Jordan method for numerical analysis of
a planar scatterer with CPU and GPU.

TABLE I
GUIDELINES FOR DIRECT/ITERATIVE SOLVER.

Guidelines Direct solver Iterative solver
(Gauss-Jordan method) (CG method)

w/guideline 1 All operations are executed by GPU
w/guideline 2 Memory access to Z matrix is coalesced
w/guideline 3 NT = 96

Green’s function. By introducing the FMM, matrix-vector
multiplication in the CG method can be carried out collec-
tively. Because the CG-FMM is based on the CG method, the
optimum tuning for the CG method is also effective to save
computing time of the CG-FMM.

IV. NUMERICAL EXAMPLES

In this section, the three guidelines for fast GPU computing
which was reviewed in the previous section are applied to
the CUDA programs of the direct/iterative solvers. Numerical
analysis of a planar scatterer was carried out to evaluate the
effect of the three guidelines. The planar scatterer was divided
into a number of wire grid segments and Richmond’s MoM
was used for numerical analysis [15]. All results of numerical
analysis in this paper were obtained by Intel Xeon 2.27 GHz
CPU and NVIDIA Tesla C2075 GPU. Double precision real
and complex number were used in our in-house programs. All
guidelines for direct/iterative solver for MoM are shown in
Table I.

A. Gauss-Jordan Method and CG Method

The computing time of Gauss-Jordan method is shown
in Fig. 1. By applying the three guidelines to the CUDA
programs, it is shown that the computing time of the Gauss-
Jordan method becomes so small. On the other hand, the
computing time of the Gauss-Jordan method w/o guidelines

16P1-S1EMC’14/Tokyo

Copyright © 2014 IEICE

z y

x

O

φ
inc

θ
inc

k

Einc

4 10-9
N
2.5

�

 CPU
 GPU w/o guidelines
 GPU w/guideline 1
 GPU w/guidelines 2
 GPU w/guidelines 2 and 3

2 10-7
N
2.5

�

C
o

m
p

u
ti

n
g
 t

im
e

[s
ec

.]

Number of unknowns N

(θ
inc

, φ
inc

)=(30o, 0o)

10 10 10 10
10

10

10

10

10

10

Fig. 2. Computing time of CG method for numerical analysis of a planar
scatterer with CPU and GPU.

Number of unknowns N

C
o

m
p

u
ti

n
g
 t

im
e
 [

se
c
.]

CPU
GPU w/guideline 1 and 2

8.5 10-8
N

7/3
�

�4.8 10-4
N log N

(θ
inc

, φ
inc

)=(30o, 0o)

102 103 104 105
10-2

100

102

104

106

108

z y

x

O

φ
inc

θ
inc

k

Einc

Fig. 3. Computing time of CBFM for numerical analysis of a planar scatterer
with CPU and GPU.

becomes large due to frequent data transfer and inefficient
memory access. When the Gauss-Jordan method w/o guideline
1 is executed, the pivot search and sweeping out which require
O(N2) and O(N3) of computing time, respectively, are only
executed by the GPU. After the both pivot search and sweeping
out are executed by the GPU, Z matrix is modified and the
modified Z matrix is required for the next numerical operation
which is executed by CPU. Therefore, in the Gauss-Jordan
method w/o guideline 1, the modified Z matrix whose size is
O(N2) must be transferred from GPU to CPU every time the
pivot search and sweeping out are finished. Data transfer time
of O(N2) is large but can be avoided by applying the guideline
1. For the Gauss-Jordan method, the guideline 2 is the most

Number of unknowns N

C
o
m

p
u
ti

n
g
 t

im
e
 [

se
c
.]

8 10-6
N

2
�

8 10-8
N

2
�

CPU
GPU w/o guidelines
GPU w/guideline 2

4 10-7
N

2
�

(θ
inc

, φ
inc

)=(30o, 0o)

102 103 104 105
10-2

100

102

104

106

108

z y

x

O

φ
inc

θ
inc

k

Einc

Fig. 4. Computing time of CG-FMM for numerical analysis of a planar
scatterer with CPU and GPU.

effective to save the data transfer time because O(N2)memory
access is required every time the pivot search and sweeping
out are carried out. From Fig. 1, it is also confirmed that
about 20 ∼ 30% of computing time can be saved by applying
the guideline 3 to the CUDA program of the Gauss-Jordan
method.
The computing time of Conjugate gradient (CG) method is

shown in Fig. 2 and it can be said that the guideline 1 is not
effective to save the computing time. When the CG method
w/o guideline 1 is executed, the matrix-vector multiplication
is only executed by the GPU. The Z matrix element remains
the same from beginning to end in the CG method while the
Z matrix element is modified by pivot search and sweeping
out in the Gauss-Jordan method, Therefore, the maximum size
of data which is transferred between CPU and GPU is at most
O(N) in the CG method w/o guideline 1 once the Z matrix
element is transferred to the GPU. Because the computing time
for matrix-vector multiplication in the CG method is O(N2),
which is much larger than the data transfer time of O(N) in
the CG method, the guideline 1 has almost no effect on the
computing time of the GPU. On the other hand, it is found that
the computing time of the CG method becomes much smaller
by applying the guidelines 2 and 3 to the CUDA programs.
Because the memory access of O(N2) is required every time
the matrix-vector multiplication is carried out, it can be said
that the guideline 2 is most effective to save data transfer
time. From Fig. 2, it is also found that about 20 ∼ 30% of
computing time can be saved by applying the guideline 3 to
the CUDA program of the CG method.

B. CBFM and CG-FMM

Here, the computing time of the CBFM and CG-FMM with
guidelines is quantitatively evaluated. As shown in Fig. 1, it
was found that the guideline 1 and 2 can save the computing
time of Gauss-Jordan method greatly. Therefore, the guideline

16P1-S1EMC’14/Tokyo

Copyright © 2014 IEICE

1 and 2 are only applied to the Gauss-Jordan method used
in the CBFM. On the other hand, according to the effects of
guidelines in CG method shown in Fig. 2, it was shown that
the guideline 2 can save the computing time of CG method
greatly. Therefore, the computing time of the CG-FMM with
the guideline 2 is quantitatively evaluated.
Fig. 3 shows the computing time of the CBFM. In the

CBFM, it is known that the computing time of the CBFM
becomes O(N7/3) when the number of blocks M = 0.9N1/3

[14]. As shown in Fig. 3, it is found that the computing
time of the CBFM by using CPU is O(N7/3). On the other
hand, the computing time of the CBFM by using GPU is
O(N log N). In the CBFM, the Gauss-Jordan method is used
to solve block matrix equation and the size of block matrix is
much smaller than that of the original matrix. From Fig. 1, it
is found that the computing time of the Gauss-Jordan method
becomes O(N log N) when the size of matrix is small. In
this numerical example, the part of pivot search in the Gauss-
Jordan method is tuned by the binary search tree algorithm
and executed in parallel by GPU. Therefore, the computing
time of the Gauss-Jordan method becomes O(N log N) when
the number of processors in GPU is larger than the size of
block matrix.
Fig. 4 shows computing time of the CG-FMM. It is well-

known that the computational cost of the matrix-vector mul-
tiplication in the CG method can be reduced from O(N2)
to O(N1.5) by FMM. From the results of numerical analysis
shown in Fig. 2 and 4, it is found that the order of the total
computing time is reduced from O(N2.5) to O(N2). From Fig.
4, it is found that the computing time of the CG-FMM with
the guideline 2 is 1/5 compared with that without guidelines.
Therefore, it can be said that coalesced memory access is
effective to save computing time of CG-FMM.

V. CONCLUSIONS
In this paper, three guidelines for GPU computing were

applied to the direct/iterative solver for MoM. Results of
numerical analysis showed that coalesced memory access
(Guideline 2) is the most effective technique to save the
computing time of these solvers. In addition, these guidelines
were applied to the fast MoM such as the CBFM and CG-
FMM. The computing time of the CBFM and CG-FMM
with these guidelines were quantitatively investigated and
summarized.

ACKNOWLEDGEMENT
This work was supported by JSPS KAKENHI Grant Num-

ber 25420394.

REFERENCES
[1] R.F. Harrington, Field Computation by Moment Methods, New York,

Macmillan, 1968.
[2] T.K. Sarkar, K.R. Siarkiewicz, and R.F. Stratton, “Survey of numerical

methods for solution of large systems of linear equations for electromag-
netic field problems,” IEEE Trans. Antennas Propag., vol.AP-29, no.6,
pp.847-856, Nov. 1981.

[3] S. Peng and Z. Nie, “Acceleration of the method of moments calculations
by using graphics processing units,” IEEE Trans. Antennas Propag.,
vol.56, no.7, pp.2130-2133, July 2008.

[4] E. Lezar and D.B. Davidson, “GPU-based LU decomposition for large
method of moments problems,” Electron. Lett., vol.46, no.17, pp.1194-
1196, Aug. 2010.

[5] D.D. Donno, A. Esposito, G. Monti, and L. Tarricone, “MPIE/MoM
acceleration with a general-purpose graphics processing unit,” IEEE
Trans. Microw. Theory Tech., vol.60, no.9, pp.2693-2701, Sept. 2012.

[6] NVIDIA Corporation, “CUDA C Programming Guide,” ver.5.0, NVIDIA
Corp., Oct. 2012.

[7] The Portland Group, “CUDA Fortran Programming Guide and Refer-
ence,” ver.13.1, The Portland Group, Jan. 2013.

[8] K. Konno, H. Katsuda, K. Yokokawa, Q. Chen, K. Sawaya, and Q. Yuan,
“Quantitative study of computing time of direct/iterative solver for MoM
by GPU computing, ” IEICE Commun. Express, vol. 2, no. 8, pp. 359-
364, 2013.

[9] M. Cwikla, J. Aronsson, and V. Okhmatovski, “Low-frequency MLFMA
on graphics processors,” IEEE Antennas Wireless Propag. Lett., vol.9,
pp.8-11, 2010.

[10] S. Peng and C.-F. Wang, “Precorrected-FFT Method on Graphics Pro-
cessing Units,” IEEE Trans. Antennas Propag., vol.61, no.4, pp.2099-
2107, April 2013.

[11] R. Coifuman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,” IEEE Antennas Propag.
Mag., vol.35, no.3, pp.7-12, June 1993.

[12] V. Rokhlin, “Rapid solution of integral equations of scattering theory in
two dimensions,” J. Comput. Phys., vol.86, no.2, pp.414-439, Feb. 1990.

[13] V.V.S. Prakash and R. Mittra, “Characteristic basis function method:
A new technique for efficient solution of method of moments matrix
equations,” Microw. Opt. Technol. Lett., vol.36, no.2, pp.95-100, Janu.
2003.

[14] K. Konno, Q. Chen, K. Sawaya, and T. Sezai, “Optimization of block
size for CBFM in MoM,” IEEE Trans. Antennas Propag., vol.60, no.10,
pp.4719-4724, Oct. 2012.

[15] J.H. Richmond and N.H. Geary, “Mutual impedance of nonplanar-skew
sinusoidal dipoles,” IEEE Trans. Antennas Propag., vol.AP-23, no.3,
pp.412-414, May 1975.

16P1-S1EMC’14/Tokyo

Copyright © 2014 IEICE

