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1 Introduction

Method of Moments(MoM) is known as one of the powerful techniques for numerical analysis of
antennas and scatterers[1]. With a direct solver like Gauss-Jordan method, CPU time for the MoM
is O(N?3) where N is number of unknowns. Therefore, the direct solver can not be applied to the
MoM when N is too large.

Previously, iterative methods like conjugate gradient (CG) method has been proposed for reduc-
tion of CPU time [2]. CPU time for each iteration is O(N?) and total CPU time becomes smaller
than O(N?3) when number of iteration steps is smaller than N. However, iterative methods are not
effective for ill-conditioned problems because number of iterations for the problems is proportional
to N[3]. Therefore, total CPU time required for anlysis of ill-conditioned problems is still O(N?3)
even when iterative methods are used.

CBFM (Characteristic Basis Function Method) is also known as one of the powerful techniques
for analysis of large-scale problems[4]. Since the CBFM does not include iterative procedure like
the CG method, CPU time required for the CBFM can be reduced for the ill-conditioned problem.
So far, it has been found that CPU time required for the CBFM depends on number of blocks M.
However, relation between number of blocks M and number of segments N, which gives minimum
CPU time, has not been investigated. In this paper, optimum number of blocks M is derived
theoretically as a function of N. The numerical simulation shows that minimum CPU time for the
CBFM is realized by the optimum M.

2 CBFM
2.1 Principle

Unknown N dimensional current vector is expressed as follows,
M
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where M is number of blocks, « is unknown weight coefficient, and J is characteristic basis function
CBF). At first, Primary basis J?°. which shows self-interaction on the block are obtained by solving
(4,)
extended matrix equation.
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where Z&° is (K + K,) x (K + K,) extended block matrix, J@.lf) is (K + K,) extended block
current vector, V& is (K + K,) extended block voltage vector. K is number of segment on the
block and K, is number of overlap segments which improves the CBF by removing undesired edge

effects caused by block truncation. Primary basis J l{ﬁ‘;) is obtained from J fz lf) by excluding values

corresponding to overlap segments.



Next, Secondary basis is obtained as follows,
ZECIER = Vil where VI = —ZRYIi 3)
(k=1,2,..,i—1,i4+1,...,. M)

where Zf};lol consists of (K + K,) x K’ partial matrix of Z&'° and J l(’ffk) consists of K’ partial vector

of J I(’fc"k). K' = (K — K*) where K¥ is number of overlap segments between ith and kth block.
After that, the original matrix equation is transformed into following equation by the CBF.
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Finally, Galarkin procedure is applied to (4) and the original N x N matrix equation is compressed
into M? x M? reduced matrix. Weighting coefficient « is obtained by solving the reduced matrix
and the solution of the original problem can be obtained from (1) .

2.2 Optimum number of blocks

As a function of number of blocks M, order of the CPU time for the CBFM as well as optimum
number of blocks M can be shown as follows.

CPU time o« N3/M? + M*N
= N7/3 where M =~ 0.9N'/3 (5)

The first term of above equation means CPU time for calculation of Primary basis, which shows
the most rapid decrease as a function of M. On the other hand, the second term of above equation
means CPU time for calculation of reduced matrix, which shows the most rapid increase as a
function of M. The optimum number of M can be derived as a value to minimize sum of the
two terms. After partial differentiation is applied to Eq.(5), M ~ 0.9N'/3 and O(N"/3) are easily
derived as the optimum M and minimum CPU time, respectively.

3 Numerical Results

In this section, scattering problems are analyzed by the CBFM and the results are compared with
those of the CG method as well as Gauss-Jordan method. As shown in Fig. 1, one/two dimensional
structures are selected as an analysis model. On the CBFM, number of blocks is selected as around
M =~ 0.9N'/3 and extended width w,, which determines number of overlap segments K, is also set
to be optimum value based on numerical analysis. On the CG method, relative residual e = 10~*
is selected as convergence criteria.

For each antenna, CPU time variation with respect to M is shown in Fig. 2. As previously
discussed, it is found that CPU time was minimized when M ~ 0.9N'/3. In addition, the result
shows that M ~ 0.9N'/3 still gives minimum CPU time even when some overlap segments exist.

Total CPU time required for analysis is shown in Fig. 3. CPU time required for the CG method
and the CBFM is O(N?) and O(N7/3), respectively. CPU time of the CG method is still O(N3)
since linear antenna is an ill-conditioned problem and number of iteration steps is proportional to
N. On the other hand, CPU time required for the CBFM is O(N7/?) because the CBFM does not
include iterative procedure and can realize constant CPU time for any problems. From the results,
it is shown that the CBFM is more effective for ill-conditioned problems than the CG method.



4 Conclusion

Relation between M and N which realizes minimum CPU time of the CBFM was theoretically
derived and M = 0.9N'/3. After that, numerical analysis of one/two dimensional antenna structure
was carried out by using the CBFM. On the numerical analysis, it was found that minimum CPU
time required for analysis by the CBFM is O(N"/3) when M = 0.9N'/3,
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Figure 1: Analysis model.
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Figure 2: CPU time variation with respect to M.
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