導波管漏れ波集光アンテナに関する研究

概要: Ka バンド帯において, ミリ波イメージングに応 用が可能な近傍界集光アンテナを提案する.進行波アン テナの一種である方形導波管漏れ波アンテナの内部広壁 の大きさを不均一に設定することで任意の位置に集光効 果を得る.本報告では任意の位置に集光効果を得る導波 管漏れ波集光アンテナの試作と提案アンテナを用いたイ メージング法について検討し数値計算結果と実験結果を 示す.

キーワード: 導波管漏れ波アンテナ,近傍界,集光, イメージング

1. まえがき

近年,3D プリンタの普及などの影響で銃や爆弾など の危険物が容易に入手,製造が可能となってきている. またサイズも小型化され持ち運びや隠蔽が簡単になって きている.空港や湾港等ではテロ防止のセキュリティ対 策として人体に非接触・非侵襲で危険物等を検知できる イメージング技術の必要性が高まっている.加えて,わ きの下など人体の見えづらい部分にはより小型で軽量な ハンディ型のイメージング装置が望まれる.

マイクロ波を近傍界に集光させる技術はイメージング [1], 温熱医療[2], WPT(Wireless Power Transmission)[3], RFID リーダー[4]など様々なアプリケーションで注目さ れている.通常マイクロ波を近傍界に集光させる際には レンズとアンテナを用いる場合やリフレクトアレーを用 いる場合がほとんどである.しかしそういった集光手法 ではイメージング装置の重量やサイズが大きくなってし まうため,小型化・軽量化には向かない.アンテナのみ で集光することができれば非常にコンパクトであり軽量 化が可能となる.そのためハンディ型のイメージング装 置に応用ができると期待される.

進行波アンテナの一種であり放射方向が周波数によっ て異なるため一度に複数点を受信可能な導波管漏れ波ア ンテナに着目できる.しかしながら導波管漏れ波アンテ ナ自体には集光効果はなくイメージングは不可能である. 導波管漏れ波アンテナのみを用いて集光効果が得られれ ば、小型のイメージング装置への応用が可能であると考 えられる.漏れ波アンテナを用いた集光効果については、 これまでにいくつか報告されている.漏れ波アンテナの

橋本 卓也, 佐藤 弘康, 陳 強 (東北大学大学院工学研究科)

スリット間隔を不均一に設定する[5],導波管の構造を三 次元的に湾曲させる[6].また、本報告と同様に、導波管 の広壁の幅を調整することで集束効果を得る方法が提案 されている[7].しかし,本論文は[7]で使われている平行 平板構造が使用されておらず,さらに導波管内部の誘電 率が真空と同じであることである.したがって,構造の 単純化と小型化が期待される.このように導波管の内部 構造のみを不均一にすることの検討はまだ行われていな い.

本報告では設計周波数 27 GHz としてミリ波イメージン グに応用が可能な近傍界集光アンテナを提案する.進行 波アンテナの一種である方形導波管漏れ波アンテナの内 部広壁の大きさを不均一に設定することで任意の位置に 集光効果を得る.本報告では任意の位置に集光効果を得 る導波管漏れ波集光アンテナの試作と提案アンテナを用 いたイメージング法について検討し数値計算結果と実験 結果を示す.

集光の原理

本章では導波管漏れ波アンテナの集光効果の原理つい て概念図を用いて説明する.導波管漏れ波アンテナを用 いてイメージングを行うためには,同一周波数において 漏れ放射を近傍界に集光させる必要がある.近傍界に漏 れ波を集光させる手法の一つに進行波の位相定数を不均 一に与える方法がある.導波管内の進行波の位相定数を 徐々に変化させ不均一に与えることで漏れ放射を近傍界 に集光させることができる.

図1は集光の原理を示している. *z* = -0.5*L* で進行波が 励振される.進行波の位相定数を管内で不均一に与える ことで近傍界の一点に集光効果が得られる.任意の一点 に集光させるためには進行波の位相定数を所望の分布に する必要がある.

図 1 に示した集光点を $S(z_s, x_s)$ とすると、S に集光するために必要な導波管内の進行波の位相定数分布 $\beta(z')$ はアンテナ上の任意の点 z'について以下の微分式(1)で表すことができる.

$$\beta(z') = k_0 \frac{d\{\sqrt{(z_s - z')^2 + x_s^2} - \sqrt{z'^2 + x_s^2}\}}{dz'}$$
(1)

本報告の設計法では導波管漏れ波アンテナの内部広壁の 高さを不均一に設定することで式(1)あるように所望の位 相定数分布を実現し任意の位置へ集光効果を得る.

2019 年 10 月 15 日東北大学電気・情報系 1 号館 2 階大会議室

2

Wave-guide Leaky wave antenna

図1. 集光の原理図. 管内の進行波の位相定数を所望の 分布にすることで任意の位置に集光効果を得る.

3. 集光漏れ波アンテナの試作

本章では任意の位置に集光効果を得る導波管漏れ波アン テナの試作について述べる.導波管漏れ波アンテナの放 射方向は広壁の大きさhに依存する.また,管内進行波 の位相定数 β も広壁の大きさにも依存する.このことか ら,各広壁の高さにおける位相定数を推定することが可 能である.

本報告における導波管漏れ波アンテナの数値解析モデル を図2に示す. 提案する導波管漏れ波アンテナは導波管 狭壁面に多数のスリットを有する.このアンテナの設計 周波数は27 GHz であり,漏れ波アンテナ部の構造は導 波管スロットアレー[8]に基づいている. 内部モノポー ルで TE10モード進行波を励起する.表1は提案アンテ ナの各パラメータを表している.

漏れ波アンテナの位相定数と広壁の高さの間の関係を近 似した.関係近似式を式(2)に示す。

$$h \,[\mathrm{mm}] = e^{2.616 - 0.645 \cos^{-1/2}/k_0}$$
 (2)

関係式(3)を用いることで任意の位置に集光効果を得る のに必要な所望の位相定数分布とそれに対応する導波管 広壁高分布を推定することができる. 図4に設計点が S $(z_s[mm], x_s[mm]) = (150, 195)$ の正規化所望の位相 定数分布と数値解析結果を示す. アンテナ上の位置 z"が 大きくなるにつれて正規化所望位相定数分布は徐々に小 さくなる. また数値解析結果も同じ傾向を示した. また 値も所望の位相定数分布もほぼ一致した.

図 5 は式(2)を用いて導出された広壁長分布 h(z)とした 導波管漏れ波集光アンテナの電界 $|E_y|$ の近傍界 xz 平面分 布の数値解析結果を示している. 27 GHz で設計集光位置 S $(z_s[mm], x_s[mm]) = (150, 195)$ に集光効果が得られ ているのが分かる.また集光位置は周波数に対して変化 しており、周波数が増加すると集光位置は z 軸正方向に 移動する.

図 6 に試作した導波管漏れ波アンテナを示す. 試作ア ンテナは導波管部と漏れ波アンテナ部で構成されている. 導波管と漏れ波アンテナは共にアルミで作られている. 設計集光点は 27 GHz で S (z_s [mm], x_s [mm]) = (150, 195) としている.

(a) 俯瞰図

図 2. 提案する導波管漏れ波アンテナ.

表1 導波管漏れ波アンテナの各パラメータ

周波数	f = 27 GHz
アンテナ長	L=200 mm
広壁長(導波管部)	<i>a</i> =8.5 mm
狭壁長(導波管, アンテナ)	b=4 mm
不均一広壁長(アンテナ部)	h(z') non-uniform
スリット間隔	p = 3 mm
スリット縦長	l = 4 mm
スリット横長	s = 1 mm
長手方向スリット幅	g=1 mm

図 3. 設計点 S(150 mm, 195 mm)への集光に必要な位相定 数分布β(z')と数値解析結果の比較.

図 4. 電界|E_y|近傍界 xz 平面分布の数値解析結果.集光位 置が周波数により変化する.

図 5. 試作した導波管漏れ波アンテナ.

4. 試作アンテナを用いた散乱体検知法

本章では、提案アンテナを用いた散乱体検知手法につい て検討する.提案アンテナは図4に示すように周波数によっ て集光位置が変わる.このためアンテナ1つで多数の点を1 度にスキャンすることが可能である.

図6は提案アンテナを用いた散乱体検知手法の概略を示している.この手法では提案アンテナを照射アンテナと散乱

伝送工学研究会資料 Vol. 2019, No. 611-2, 2019 年 10 月

3

波の受信アンテナとして2素子用いる.図に示す漏れ波集光 アンテナ1(LWFA1)を送信アンテナとして,LWFA2を受信ア ンテナとして用いる.まずLWFA1が各周波数に対応する近 傍位置に電磁波を照射する.もし散乱体がいずれかの集光 位置に存在した場合,照射された電磁波に対して散乱波が 生じる.この際発生した散乱波をLWFA2が受信する.この 際の受信電力は周波数特性としてあらわすことができる. つまり,特定の周波数において受信電力が増加すれば,そ の周波数に対応する集光位置に散乱体が存在していること になる.このようにして本報告で提案する手法では提案ア ンテナを2素子用いることで散乱体の有無と位置の検知を行 う.

図7は実験環境を示している.提案アンテナを2素子並べ てそれぞれ送信アンテナ受信アンテナとした.測定機器は ネットワークアナライザ(N5224A)を用いた.散乱体は金属 シリンダー(直径14 mm)とした.散乱体をx=180 mmの高さ に固定しz軸方向(横軸方向)に動かし受信電力の周波数特性 を測定した.散乱体を置かない場合と特定周波数に対応す る集光位置に散乱体をおいた場合で比較した.

図8は特定周波数(27 GHz,30 GHz)に対応する集光位置付 近に散乱体(導体シリンダー)を置いた際の実験結果を示し ている.散乱体を置かない場合と比較して特定周波数に対 応する集光位置に散乱体をおいた場合では受信電力のピー クに変化がみられた.このことから受信LWFA2が導体シリ ンダーからの散乱波を受信していることが分かった.また 受信電力のピークは集光位置に対応した周波数でみられて いた.このことから散乱体の有無だけでなく,位置につい ても受信電力の周波数特性から検知することができた.

図6. 導波管漏れ波集光アンテナを2素子使った散乱体検知 手法の概略.

図7. 実験環境の俯瞰図. 散乱体には金属シリンダーを用いた.

図8. 散乱体の各位置における受信電力の周波数特性.

5. むすび

本報告では、Kaバンド帯において、ミリ波イメージング に応用が可能な近傍界集光アンテナを提案した.進行波ア ンテナの一種である方形導波管漏れ波アンテナの内部広壁 の大きさを不均一に設定することで任意の位置に集光効果 を得た.集光位置は周波数によって変化し、一度に多数の 点をスキャンすることが可能である.提案アンテナを用い た散乱体の検知手法においても検討し、受信電力の周波数 特性から散乱体の有無と位置について検知することができ た.

参考文献

 [1] 佐藤 弘康,陳 強, "ミリ波パッシブイメージング 装置",株式会社シーエムシー出版,最新ミリ波技術, 第10章, pp.1-12, Jul.2015

- [2] J. T. Loane, III, S. Lee, "Gain optimization of a near-field focusing array for hyperthermia applications", *IEEE Trans. Microw. Theory Tech.*, vol. 37, pp. 1629-1635, Oct. 1989.
- [3] J. O. McSpaddan, J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology", *IEEE Microw. Mag.*, vol. 3, no. 4, pp. 46-57, Dec. 2002.
- [4] H.-T. Chou, T.-M. Hung, N.-N. Wang, H.-H. Chou, C. Tung, P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications", *IEEE Trans. Antennas Propag.*, vol. 59, no. 3, pp. 1013-1018, Mar. 2011.
- [5] T. Okuyama, Y. Monnai, H. Shinoda, "20-GHz focusing antennas based on corrugated waveguide scattering", *IEEE Antennas Wireless Propag. Lett.*, vol. 12, pp. 1284-1286, 2013.
- [6] Ya Fei and Yu Jian Cheng,"Near-Field Beam Focusing and Steering Generator Based on 3D Curved Substrate Integrated Waveguide,"2018 48th European Microwave Conference, pp.353-356, 2018
- [7] J. L. Gómez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. R. Weily, Y. J. Guo, "Frequency steerable two dimensional focusing using rectilinear leakywave lenses", *IEEE Trans. Antennas Propag.*, vol. 59, no. 2, pp. 407-415, Feb. 2011.
- [8] T.R.Cameron and A.T.Sutinjo, "Analysis and Design of Slitted Waveguides With Suppressed Slot-Mode Using Periodic FDTD," *IEEE Trans. Antennas Propag.*,vol. 60, No.8, pp. 3654-3660, Aug.2012