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Abstract  In our previous studies, we proposed a 2-layer IC framework based on O-RAN architecture for a cellular system 

with cluster-wise distributed MU-MIMO and applied a graph coloring algorithm (GCA)-based interference coordination (IC) to 

mitigate both the intercell interference and intracell interference. In this paper, knowing that the mobile radio environment is 

time-varying, we propose a joint IC consisting of a GCA-based intracell IC and a deep reinforcement learning (DRL)-based 

intercell IC in our 2-layer IC framework. The simulation results of our proposed joint IC have revealed that it could achieve a 

significant increase in capacity compared to the no IC case. 
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1. Introduction 
In 5G and beyond, massive MU-MIMO has been 

regarded as a promising technique [1]. Distributed MU-

MIMO [2], which exploits distributed antennas (DAs) over 

the base station coverage area (hereafter, simply called the 

cell), can relieve the problem of radio link blockage 

resulting from the utilization of mm-wave band. A large-

scale cell-wise MU-MIMO requires a prohibitively large 

computational complexity. Hence, in our previous study, 

we proposed a cluster-wise distributed MU-MIMO [3], 

where users are adaptively divided into non-overlapping 

sub-groups called user-clusters (hereafter, simply called 

clusters) based on the user location information to greatly 

reduce the computational complexity. However, in return, 

the problem of inter-cluster interference is produced. 

In a cellular system with cluster-wise distributed MU-

MIMO, the inter-cluster interference can be of two types: 

intracell interference and intercell interference. 

Considering of the system scalability, we want to mitigate 

these two types of interference jointly in a fully 

decentralized manner, that is, each cell works 

independently with no information exchange among each 

other. Under this decentralized scenario, the intracell 

interference coordination (IC), which aims to mitigate the 

interference caused by clusters in the own cell, is relatively 

straightforward because each BS has all the information 

about its governing clusters. While the intercell IC, which 

aims to mitigate the interference from clusters belonging 

to surrounding cells but facing each other along a cell 

boundary, is much more difficult to realize. 

In recent years, with the rise of artificial intelligence 

(AI) technology, especially the deep reinforcement 

learning (DRL), some new intercell IC schemes in a 

cellular system have emerged. In 2020, in order to solve 

the intercell IC problem in an ultra-dense small-cell 

network deployed in a residential area, Y. Wang, et al. [4] 

applied the actor-critic (AC) algorithm to minimize each 

BS’s transmit power so as to reduce the intercell 

interference to the user equipments (UEs) of the 

surrounding BSs. In order to realize a fully decentralized 

scheme without information exchange between BSs, the 

Mean Field Theory is employed together with AC 

algorithm. Similarly, in 2021, in order to solve the intercell 

IC problem in HetNets, M. Yan, et al. [5] applied the 

Double deep Q network (DQN) to schedule sub-channels to 

individual users. In order to improve the robustness of 

Double DQN, Wasserstein Generative Adversarial 

Networks (W-GANs) was incorporated together in [5].  

In our previous study, we proposed a 2-layer IC 

framework [6] based on O-RAN architecture [7]. Besides 

that, we also proposed a graph coloring algorithm-based IC 

(GCA-IC) [6] to be applied in the 2-layer IC framework. 

However, the mobile radio environment is time-varying, 



 
  
 

 

the static GCA-based IC does not cope very well with such 

a dynamically varying mobile radio environment. 

Therefore, in this paper, we propose a joint IC, in which 

the DRL is applied to our GCA-IC. The joint IC under 2-

layer IC framework can be expected to mitigate both the 

intercell interference and the intracell interference in a 

totally distributed manner under a dynamically varying 

environment.  

To ensure that the joint IC can adapt quickly to the 

varying environment, the DQN needs to be trained with the 

real-time data obtained from interaction with the 

environment. Therefore, DQN is trained online instead of 

offline in this paper, which guarantees that our proposed 

joint IC can adapt to the varying environment and react in 

real time. 

The remainder of this paper is organized as follows. 

Section 2 gives a brief introduction of the 2-layer IC 

framework. Section 3 provides the system model and the 

problem formulation. In Section 4, the proposed joint IC is 

described. The performance evaluation is conducted by 

computer simulation in Section 5, and Section 6 concludes 

this paper. 

2. 2-layer IC framework 
The proposed 2-layer IC framework is designed based on 

O-RAN architecture as shown in Fig.1. The key functional 

components introduced by O-RAN architecture is the near-

real-time (near-RT) radio access network intelligent 

controllers (RICs) with the xAPPs, and the non-RT RIC 

with rApps. The near-RT RICs, with the control loop of 

10ms ~ 1s, are designed to be the specific executor to 

control one or several cells, while the non-RT RIC, with 

the control loop of longer than 1s, is to provide guidance 

for the near-RT RICs with its global optimization and 

monitoring capability. 

The proposed 2-layer IC framework allows the two kinds 

of RICs to cooperate with each other and fully exploit their 

respective advantages. The clustering, together with the IC 

are designed to applied as the xAPPs on each near-RT 

RICs, respectively. While the non-RT RIC is responsible 

for the cellular reconstruction and guiding the application 

of IC of each near-RT RICs.  

In our previous study [6], we realized a successful 

application of applying GCA in the 2-layer IC framework. 

This paper is a preliminary attempt in the application of 

DRL in it. Our proposed joint IC consists of a GCA-based 

intracell IC and a DRL-based intercell IC. Both ICs are 

designed to work in the fully decentralized manner, which 

means that both ICs can be applied independently by each 

near-RT RIC with only the locally observed information. 

During the communication, each near-RT RIC updates the 

clustering results based on the users’ movement and 

associates the DAs to each cluster according to the 

principle of proximity. The updating of the clustering 

results will trigger the GCA-based intracell IC (described 

in Sect. 4 (B)) to allocate the different sub-bands to the 

neighboring clusters to mitigate the intracell interference. 

After that, the non-RT RIC with its broader system-level 

view will send guidance information to the near-RT RICs 

to turn on some of the non-adjacent cells’ DRL-based 

intercell IC (described in Sect.4(C)). Then, the selected 

cells will work independently to mitigate the intercell 

interference with only the locally observed information. 

The 2-layer IC framework can be classified as a semi-

decentralized framework that adds an additional 

centralized layer on top of the decentralized layer. As a 

preliminary study of the application of DRL for IC under 

O-RAN architecture, in this paper we only focus on the 

near-RT RIC part, that is how to jointly apply the GCA and 

DRL to mitigate both the intracell interference and the 

intercell interference, while leave the details about the 

higher-level control from the non-RT RIC for a future study.  

 

Fig. 1. 2-layer IC framework based O-RAN architecture. 

3. System model and the problem formulation 
In our proposed joint IC, the entire bandwidth is 

segmented into M sub-bands, where M is called the 

bandwidth segmentation factor, and one of the sub-bands 

is allocated to each cluster. The set of clusters in the entire 

communication service area and the set of clusters which 

are allocated the 𝑚௧  sub-band in the entire 

communication service area are denoted by 𝜅  and 𝜅 , 

𝑚 ∈ {1, … , 𝑀}, respectively. In this paper, the numbers of 

users, DAs, and clusters in 𝜅 are denoted by 𝑁, 𝑁, and 

𝑁, respectively. While those in 𝜅 are denoted by 𝑁
, 

𝑁
, and 𝑁

, respectively. The 𝑖௧ user in the 𝑘௧ cluster 



 
  
 

 

in 𝜅   is denoted by 𝑢,
  . Below, the matrices are 

represented as bold upper-case letters and the superscripts 

(𝑖, : ) and (: , 𝑖) represent the 𝑖௧ row and column vectors of 

the matrix, respectively. Assuming the zero-forcing (ZF) 

based cluster-wise MU-MIMO to eliminate the multi-user 

interference within each cluster and by approximating the 

sum of inter-cluster interference and noise as a complex 

Gaussian process, the received signal-to-interference plus 

noise ratio (SINR) of user 𝑢,
  is given as   
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where 𝐖 and 𝐖 are the ZF precoder matrices, 𝐇 and 

𝐇, are respectively the channel matrix of the 𝑘௧ cluster 

and the interference channel matrix between users in the 

𝑘௧  cluster and DAs in the 𝑙௧  cluster in 𝜅 . 

𝑁,  
  denotes the number of users in the 𝑘௧  or 𝑙௧ 

cluster in 𝜅 . 𝑃  and 𝑃  are the transmit powers 

allocated to the 𝑘௧ and 𝑙௧ clusters, respectively and can 

be expressed as  
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where 𝑃 is the transmit power-to-noise ratio equal to all 

𝑁 users. Using the SINR expression in Eq. (1), the user 

capacity of user 𝑢,
  can be expressed as  
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Assigning different sub-bands to different clusters is 

equivalent to dividing the clusters into different cluster 

subsets {𝜅; 𝑚 ∈ {1, … , 𝑀}}. Therefore, our goal is to select 

optimal cluster subset 𝜅 ⊆ 𝜅 which maximizes the sum 

capacity. We set our optimization objective as follows: 
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4. Joint IC based on GCA and DRL 
The framework of our proposed joint IC is illustrated in 

Fig.2. Each near-RT RIC independently forms clusters 

according to the changes of user locations. Once the 

clustering result is updated, the GCA-based intracell IC is 

triggered to reassign sub-bands to the newly formed 

clusters to mitigate the intracell interference. After that, 

the non-RT RIC will send commanding signals to the near-

RT RICs and then, some of the non-adjacent cells’ DRL-

based intercell IC will be turned on to work independently 

to mitigate the intercell interference caused by color 

collision.  

During the implementation process of the DRL-based 

intercell IC, each near-RT RIC first estimates the current 

state s( t) in the timeslot t, which is used as the input to the 

DQN to derive the estimated value of each color-adaptation 

actions. The action a ( t) with the highest value will be 

selected, which as a consequence, will change the existing 

coloring results to minimize the occurrence of color 

collision near the cell boundary. The selected a ( t) actually 

serves the next timeslot t+1, therefore s( t+1) is estimated 

again and the reward r( t+1) is defined by the near-RT RIC 

to evaluate the merit of the selected a ( t) by comparing s( t ) 

and s( t+1). 

Because the online training strategy is adopted in this 

paper, we assume that the wireless environment at s( t ) and 

s( t+1) are different. Unlike the commonly used offline 

training [8][9], online training can ensure that the 

parameters of DQN are constantly updated and thus is able 

to follow the time-varying environment and provide real-

time solutions. As a result, our proposed joint IC based on 

online training can naturally explore the unknown 

environment and find solutions with well adaptability to 

the time-varying environment. 

To enable efficient online training, in this paper, we 

assume that each near-RT RIC is equipped with a fixed size 

of memory pool, in which the state transition sequence 

Δ(௧) = ൫𝑠(௧), 𝑎(௧), 𝑠(௧ାଵ), 𝑟(௧ାଵ)൯  that happened in latest 

timeslots are stored. During the online training process, a 

batch of data D is randomly selected from the memory pool 

to train the DQN. The application of memory replay and 

batch selection [10] can effectively eliminate the 

correlation between training data and improve the data 

utilization. Meanwhile, it ensures that the training dataset 

for online training is up-to-date and also, it greatly reduces 

the size of dataset during each training episode so as to 

reduce the training overhead. 



 
  
 

 

 

Fig.2. The framework of joint IC. 

 

4.1. GCA-based intracell IC 
In our previous study [6], we modelled the IC problem 

as a graph and applied GCA from graph theory to optimize 

the sub-bands allocation in order to mitigate the intracell 

interference. We revealed that there is a tradeoff between 

the bandwidth segmentation and the interference 

mitigation and that the maximum capacity is obtained when 

the bandwidth segmentation factor M=4. We also proposed 

an GCA in which the value of M is controllable. In this 

paper, we apply the GCA of [6] for intracell IC.  

4.2. DRL-based intercell IC 
Since we assume a fully decentralized framework, we 

suppose that each BS is a single agent and that the IC 

problem in each cell can be modeled as a Markov decision 

process (MDP), which can be expressed as a triplet {S, A, 

R}, where S represents the state space, A represents the 

action space, and R is the reward function. They are 

described below. 

 State space: At timeslot t, we define the states 

for each BS agent as the instantaneous sum capacities 

of the clusters those belong to 𝜅 in each cell based 

on the current coloring result, which is expressed as 

( ) ( ) ( ) ( )
0 1 1[ , , , ]t t t t

Ms C C C   . 

 Action space: The action that each BS can take 

is designed as 𝐴 = {1, 2, … , 𝑀}. Let the coloring result 

for the 𝑘௧ cluster after GCA be 𝑔 ∈ {0,1, … 𝑀 − 1}. 

In timeslot t+1, after the action 𝑎(௧) is chosen by the 

BS, the coloring result of each cluster is adjusted 

based on the modulo operation as  

  ( 1) ( ) ( )  mod t t t
k kg g a M   . (6) 

As for the action selection policy (𝜋), we adopt the 

well-known 𝜀 -greedy policy [10] to balance the 

exploration and the exploitation. 

 Reward function: The reward function is 

defined as the difference in the change of sum 

capacity after taking 𝑎(௧)  to change the coloring 

result and is given as 
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The DQN used in this paper is an extension of the basic Q-

learning algorithm [10], which applies the Bellman 

equation to update the Q value with the learning rate   

as 

( ) ( ) ( ) ( )

( 1) ' ( 1) ( ) ( )

( , ) ( , )
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t t t t

t t t t

a A
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Since the environment are changing in time, the state 

space S becomes infinite. Therefore, the DQN, in which the 

tabular-based storage is replaced by a neural network, is 

our better choice. In order to better train the DQN, we 

adopt the semi-fixed target network method [10], in which 

one local DQN and one semi-fixed DQN coexist. The local 

DQN updates its weight 𝜃 during the online training and 

calculates the estimated Q value 𝑄(𝑠(௧), 𝑎(௧), 𝜃) (denoted by 

Q_estimated). While the semi-fixed DQN, with weight 𝜃ᇱ 

been copied from 𝜃 every 𝑇∗ timeslots, is to calculate the 

target Q value 𝑄(𝑠(௧ାଵ), 𝑎(௧ାଵ), 𝜃ᇱ)  (denoted by Q_target). 

The cooperation of semi-fixed DQN and local DQN can 

improve the convergence during the DQN training.  

In DQN, the Q_target and Q_estimated can be obtained 

by local DQN and semi-fixed DQN, respectively, as 

follows  

 ( 1) ( 1) 'max ( , , )Q_target t t

a A
r Q s a 


    , (9) 

 ( ) ( )Q_estimated ( , , )t tQ s a  . (10) 

Therefore, the loss is defined as  

 2
loss( ) (Q_target Q_estimated)

D

   . (11) 

The DQN training process is to minimize the loss by 

updating the value of 𝜃.  

5. Simulation results 
We consider a normalized area of 5×5 over which 25 

cells are constructed as shown in Fig.3(a). In our 



 
  
 

 

simulation, the user locations are generated randomly 100 

times, and for each generation of user locations, the quasi-

static channel is realized as follows. The distance 

dependent pathlosses are computed based on the generated 

user locations. The log-normally distributed shadowing 

losses are generated 10 times for each generation of user 

locations. The Rayleigh fading gains are generated 10 

times for each generation of shadowing losses. In this 

paper, the cell which is located in the center area and 

receives the intercell interference from every direction is 

selected as the cell of interest to evaluate the performance 

of our proposed joint IC. The DQN is made up of a 3-layer 

fully connected neural network, and the Gradient Descent 

with Momentum and Adaptive Learning Rate 

Backpropagation [11] is used as the network training 

function. Other detailed parameters are shown in Table I.  

Figures 3(b) and (c) illustrate the sub-bands allocation 

results at timeslot 𝑡 = 0  and 100, respectively. At the 

beginning ( 𝑡 = 0 ) when only GCA-based intracell IC is 

applied, the neighboring clusters inside each cell have been 

allocated different sub-bands so as to avoid the intracell 

interference. But a lot of color collisions are seen along the 

cell boundary, thereby causing the intercell interference. 

While when 𝑡 = 100, due to the implementation of DRL-

based intercell IC, the BSs can adjust their coloring results 

and thus, minimize the intercell interference. 

 

Fig. 3. An example of sub-band allocation by joint IC.  

 

 

 

TABLE I 

PARAMETER SETTING  

Total number of DAs, 𝑁 3200 

Total number of users, 𝑁 2400 

Total number of clusters, 𝑁 200 

The number of sub-bands, M 4 

Pathloss exponent 3.5 

Shadowing loss standard deviation 

in dB 

8 

𝑃 in Eqs. (2) 0dB 

𝛾 in Eqs. (9) 1 

𝜀 for  𝜀-greedy policy 0.8 

Memory size 50 

Batch size  10 

𝑇∗ 50 

Number of neurons in each layer  [256,256,32] 

 

In Fig.4, we plot the cumulative distribution function 

(CDF) of the sum capacity to evaluate our proposed joint 

IC when 8 clusters are formed in each cell. When GCA-

based intracell IC is applied alone (indicated as red line), 

the intracell interference can be mitigated effectively, thus 

increasing the capacity at CDF=50% by 33% compared to 

the no IC case (indicated as the black line). While the joint 

IC, which adds DRL-based intercell IC on top of the GCA-

based intracell IC, can mitigate both the intercell and 

intracell interferences, thus can further increase the sum 

capacity by 18% (by a total of 51% compared to the no IC 

case).  

 

Fig. 4. The CDF of sum capacity. 

 



 
  
 

 

6. Conclusion 
In this paper, we proposed a joint IC consisting of a 

graph coloring algorithm (GCA)-based intracell IC and a 

deep reinforcement learning (DRL)-based intercell IC 

under the 2-layer IC framework to mitigate both the 

intercell interference and intracell interference in cellular 

system with cluster-wise distributed MU-MIMO. The 

simulation results have revealed that the proposed joint IC 

achieves a significant capacity increase compared to the no 

IC case in a time varying mobile radio environment. 
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