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Abstract  In this paper, we propose a reinforcement learning based graph coloring algorithm (RL-GCA) to solve the 

interference coordination problem for cluster-wise distributed multi-user multi-input multi-output (MU-MIMO). Compared with 

other non-intelligent GCAs, such as our previously proposed RCN-GCA and the well-known DSATUR, our newly proposed RL-

GCA is able to significantly improve the link capacity of cluster-wise distributed MU-MIMO. Also, the detailed discussion about 

the chromatic number and convergence analysis are included in this paper. 
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1. Introduction 
The deployment of 5G has begun in many countries to 

provide new mobile communication services. The mobile 

data traffic is growing at a compound annual growth rate 

(CAGR) of 46% [1]. The massive multi-user multi-input 

multi-output (MU-MIMO) is adopted to solve the ever-

growing mobile data traffic using the limited radio 

bandwidth [2]. There are two architectures in massive MU-

MIMO, known as the co-located MU-MIMO and 

distributed MU-MIMO [3]. The distributed MU-MIMO 

becomes more and more attractive than the co-located MU-

MIMO in recent years because when the mm-wave band is 

used, the spatially deployed antennas in distributed MU-

MIMO is able to relieve the problem of radio link blockage 

which is caused by the nature of rectilinear propagation [4]. 

However, the large-scale MU-MIMO requires a 

prohibitively high computational complexity. To solve this 

problem, idea of clustering is introduced. With clustering, 

the large-scale distributed MU-MIMO is divided into 

several small-scale distributed MU-MIMO [5][6]. However, 

the introduction of clusters brings a problem of inter-

cluster interference [5]. Therefore, effective interference 

coordination algorithm is required. 

The severe inter-cluster-interference comes from the 

neighboring clusters if the same frequency band is assigned 

to them. For interference coordination, frequency 

allocation is a commonly used method [7]. Borrowing the 

idea from graph theory, we describe the clusters and their 

mutual relationship as an undirected graph 𝐺 = (𝑉, 𝐸), in 

which vertices denote the clusters while the edge denotes 

the neighboring relationship. Based on the graph 𝐺 , the 

frequency allocation problem can be abstracted as a vertex 

graph coloring problem and graph coloring algorithm 

(GCA) [8] can be applied.  

The heuristic GCA can be applied due to its simplicity 

and reasonable computational complexity. In our previous 

study [9], we proposed a heuristic algorithm named as 

restricted color number-based GCA (RCN-GCA), in which 

a more than 50% increase in the sum capacity can be 

obtained compared with 1-color case. Besides our 

application in distributed MU-MIMO, Y. Zhao [10], L. 

Chen [11], and Q. Zhang [12] also applied heuristic GCA 

to mitigate the severe co-tier interference in dense small 

cell or femtocell systems.  

 However, what heuristic algorithm can obtain is only a 

sub-optimal result. The machine learning, which has been 

attracting attention in the communications field in recent 

years [14]~[17], has a potential for further improvement. 

Especially, the reinforcement learning (RL) [13], is 

attracting much attention. Among the RL, the Q-learning is 

probably the most well-known RL algorithm, which has 

been successfully applied in some related research areas 

[14]~[17]. In [14], M. Simsek proposed a Q-learning based 

time-domain inter-cell interference coordination in a 

heterogeneous network (HetNet). In [15], K. Nakashima 

proposed a deep learning-based channel allocation scheme 



 
  
 

 

for densely deployed wireless local area networks 

(WLANs). In [16][17], the multi-agent Q-learning-based 

RL was applied. In [16], in order to optimize the joint 

subcarrier and power resource allocation, Y. Hu firstly 

applied non-intelligent algorithm to get the sub-optimal 

results, and then applied the multi-agent Q-learning to 

further improve the spectral efficiency in multi-cell OFDM 

system. While in [17], G. Bu solved the user scheduling 

and resource allocation in massive MU-MIMO system by 

multi-agent Q-learning based scheme. Compared with the 

single-agent Q-learning (such as applied in [14][15]), the 

multi-agent Q-learning used in [16][17] is able to handle 

more complex situation with sequential decisions. 

In this paper, we propose a multi-agent Q-learning based 

interference coordination algorithm to mitigate the inter-

cluster-interference in ultra-dense RAN with distributed 

MU-MIMO. Since we abstract our problem as graph 

coloring problem, we name our algorithm as RL-GCA. We 

will compare it with our previously proposed RCN-GCA 

[9] and also the well-known DSATUR [18]. We will show 

by the computer simulation that our proposed RL-GCA 

overwhelms those two non-intelligent GCA.  

The rest of paper is organized as follows. In Sect. II, 

cluster-wise distributed MU-MIMO system model is 

presented. In Sect. III, a quick review of RCN-GCA and 

DSATUR is presented. In Sect. IV, the proposed RL-GCA 

is described. The link capacity evaluation by computer 

simulation is presented together with the convergence 

analysis in Sect. V. Finally, Sect. VI offers the conclusion 

and future research plan. 

2. Cluster-wise Distributed MU-MIMO System 

Model 
In order to make a fair comparison with our previous 

studies, the same simulation model is adopted. In our 

simulation, the base station coverage area (or cell) is 

supposed to be a 1 by 1 square shaped area where 128 

antennas are randomly distributed. For MU-MIMO, the 

total number of users in the area is set between the number 

of clusters (at least each cluster has one user) and the 

number of antennas (to meet the requirement of Zero-

Forcing (ZF) algorithm). In this paper we adopt the user-

based clustering method (based on k-means algorithm) [9]. 

Fig. 1 illustrates the system model with 8 clusters. 

3. Review of Previous Work 
In this section, we quickly review our previously 

proposed RCN-GCA and DSATUR in order to better 

illustrate the difference between the intelligent GCA (such 

as the RL-GCA) and non-intelligent GCA (such as the 

RCN-GCA and DSATUR). For non-intelligent GCA, graph 

𝐺 = (𝑉, 𝐸) should be defined first. Based on the graph 𝐺, 

the heuristic method can be applied. The commonly used 

heuristic method is to firstly set all the vertex in a specific 

order, and then each time, assign the smallest color index 

to each vertex on the premise that this color is not used by 

its neighbors. In RCN-GCA, we set the clusters in 

descending order according to their degrees, while in 

DSATUR, the ordering is based on the degree of saturation. 

The different ordering decides the final coloring results, 

which in turns decides the chromatic number 𝜒(𝐺) . The 

coloring results based on RCN-GCA and DSATUR are 

shown in Fig.2, where 𝜒(𝐺) = 4  for RCN-GCA  while 

𝜒(𝐺) = 3  for DSATUR. The 𝜒(𝐺)  is of great importance 

because it decides how many parts the entire bandwidth 

will be divided into. Thus, in non-intelligent GCA, we try 

to restrict the chromatic number 𝜒(𝐺) as less as possible 

so as not to divide the entire bandwidth into too many 

narrow parts. 

 

Fig. 1. System model with 8 clusters. 

 
(a) RCN-GCA 

 
(b) DSATUR 

Fig. 2. Coloring results of RCN-GCA and DSATUR. 

4. Proposed RL-GCA 
In this section, we will explain how our proposed RL-

GCA works. RL can be interpreted as a Markov Decision 

Process (MDP), which in general, contains states(S), 

actions(A) and rewards(R). Fig.3 illustrates the framework 

of our proposed RL-GCA. We suppose that each cluster 



 
  
 

 

works as an agent and makes its own decision to choose 

the appropriate color for itself. The entire single-cell ultra-

dense MU-MIMO system is regarded as the environment. 

Each agent observes its state(s) and based on the state, it 

selects the action(a) with the help of action selection 

policy (𝜋). The performed action  reacts on the environment. 

Therefore, the state which the agent-1 observed is different 

from the state which the agent-2 observed. Meantime, the 

environment will evaluate this action by offering reward(r). 

After a set of training, the agents are able to make the best 

decisions (action) at the moment (state).  

 

Fig. 3. Framework of RL-GCA.  

The core of the Q-learning algorithm is to iteratively 

update the Q-value through Bellman equation. The Q-

learning algorithm can be expressed as 

1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t t
a A

Q s a Q s a r Q s a Q s a  
    , (1) 

where 𝛼  denotes the learning rate and  𝜆  denotes the 

discount factor. The Q-value’s function is to evaluate the 

quality of the action been selected, store it in Q-table, and 

update it in each step 𝑡 iteratively. The discount factor λ 

is set to be 1 in this paper because in our situation each 

cluster ’s coloring result has influence to the remaining 

clusters until each training episode end.  

Our objective of utilizing RL-GCA is to mitigate the 

inter-cluster interference. Therefore, our optimization 

objective is to minimize the sum of inter-cluster 

interference in each color group. The set of total clusters 

is denoted by 𝜅. For the case when 𝑁 colors are available, 

𝜅  denotes the cluster subset of 𝑛 th  color group. 𝐃୬ =

(𝑑) ∈ ℝேೖ×ேೖ   denotes the cluster-centroids’ distance 

matrix of 𝜅 in which 𝑁
 denotes the number of clusters 

in 𝜅 . If we simply use pathloss to represent the inter-

cluster interference level in 𝜅, the interference matrix can 

be denoted as 𝐈𝐂𝐈୬ = (𝑖𝑐) ∈ ℝேೖ×ேೖ  , in which 𝑖𝑐𝑖 =

𝑑
ିఊwith 𝛾 being the pathloss exponent. The optimization 

objective can be expressed as follows 
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where ‖∙‖ி represents the Frobenius norm. 

The three elements of RL-GCA (actions, states, rewards) 

are defined as follows: 

 Actions: In our case, the action is defined as each 

cluster picks one color from the color pool (all the 

colors available) 𝑎௧ ∈ {1,2, … , 𝑁} . As for the policy 

( 𝜋 ) , we adopt the widely used 𝜀 -greedy [16] as 

follows. 

 
arg max ( , ),            with probability 

Choose a random color,   with probability 1-  

t
a A

t

Q s a
a






 


. (3) 

The  𝜀-greedy policy is able to deal with the tradeoff 

between the exploration and exploitation. The 

discussion about the value of  𝜀 is shown in Sect. V. 

 States: The state at step 𝑡 can be denoted as 𝑠௧ =

[𝑠ଵ 𝑠ଶ  ⋯ 𝑠ேഉ
], in which 𝑁 represents the number of 

clusters in total set 𝜅. Accordingly,  𝑠 ∈ {0,1,2, … , 𝑁}, 

which denotes the color index for each cluster, while 

“0” indicates the clusters not been colored. 

 Rewards: The rewards works as a way to judge 

whether the action is good or not. Therefore, how to 

define the rewards is to be carefully considered. In 

this paper, the reward at step 𝑡 is defined as 

 1
1 1

( ) ( )
N N

t n t n tF F
n n
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   IC IC , (4) 

where ( )n tF
IC  and 1( )n tF IC represent the total 

inter-cluster interference in each 𝜅  at step 𝑡  and 

𝑡 − 1.  

The algorithm of our proposed RL-GCA [19] is described 

in Algorithm. In RL-GCA, each episode is a training 

session, while each step represents each agent’s Q-learning 

process. In order to perform our proposed RL-GCA, only 

the information about users’ location is required, which can 

be easily got via Global Positioning System (GPS) or other 

methods.  

Algorithm: RL-GCA [19] 

Input: 𝛼, 𝜀, 𝜆, 𝑫. 



 
  
 

 

1:      Initialize Q-table. 

2:     for each episode 

3:     Initialize current-state. 

4:     for each step 𝒕 do 

5:         Select action (for the scheduled cluster,  

select one color based on polity (𝜋)). 

6:          Update next-state. 

7:          Calculate reward. 

8:          Update Q-table. 

9:          current-state ← next-state. 

10:     end do  

11:     end for 

The final coloring results obtained by RL-GCA is shown 

in Fig. 4.The chromatic number 𝜒(𝐺) = 4.  

 

Fig. 4. RL-GCA coloring results. 

5. Monte Carlo Simulation 
5.1 Link capacity analysis 

In this section, we evaluate the downlink sum capacity 

and user capacity to compare the performance of our newly 

proposed RL-GCA with other non-intelligent GCAs. For 

simplicity, a square-shaped BS area is assumed. The 

simulation setting is shown in Table I. In this paper, we 

adopt equal power allocation, the normalized transmit 

signal power-to-noise ratio for each user is set to 0dB, 

which means that the transmit power for each user is set so 

as to the received signal-to-noise ratio becomes 0dB when 

the distance between the transmitter and receiver is equal 

to the side length of square-shaped BS area.  

TABLE I.  SIMULATION SETTINGS  

Parameter Value/State 

Number of antennas 128 

Number of users 96 

Number of clusters 6,8 

Pathloss exponent 3.5 

Shadowing standard deviation 8 [dB] 

Fading type Rayleigh fading 

Number of different user location 

patterns 

100 

Number of shadowing generation per 

user location pattern 

10 

Number of fading generation per 

shadowing generation 

10 

Discount factor 𝜆 1 

In our simulation we consider the quasi-static 

environment, which means that user location does not 

change during the communication duration. This 

environment is simulated by changing shadowing loss and 

fading several times for each realization of users’ locations. 

In the simulation, the locations of users are randomly 

generated 100 times. For each generation of user locations, 

the shadowing loss and Rayleigh fading are generated 100 

times. After a total of 10,000 channel realizations 

including pathloss, shadowing loss, and Rayleigh fading, 

the cumulative distribution functions (CDFs) of the sum 

capacity and the user capacity are obtained. 

Fig. 5 plots the CDFs of the sum capacity and the user 

capacity for the case of 96 users, 128 antennas, and 6 

clusters. It can be seen from Fig. 5(a) that our proposed 

RL-GCA provides the highest capacity and improves the 

sum capacity at CDF=50% by 69% compared with 1-color 

case (i.e., no interference coordination). On the other hand, 

the non-intelligent GCAs (RCN-GCA and DSATUR) 

achieve around 60% improvement. From the results of user 

capacity in Fig. 5(b), the RL-GCA achieves 28 times higher 

user capacity at CDF=10% than the 1-color case while the 

non-intelligent GCA achieves 20 times higher than the 1-

color case.  

 
(a) Downlink sum capacity 

 

(b) Downlink user capacity 



 
  
 

 

Fig. 5. Link capacity comparison between RL-GCA, RCN-

GCA, and DSATUR. 

5.2 Chromatic number 𝝌(𝑮) analysis 

Besides the link capacity discussion, we also find out 

some interesting conclusion through the analysis of 

chromatic number 𝜒(𝐺) . As we mentioned earlier, a 

smaller number of colors was considered to be desirable. 

Therefore, the 3-color solution was considered better than 

the 4-color solution [8]. However, according to the statistic 

results of the chromatic number distribution over 100 user 

location patterns shown in Fig. 6, it can be seen that the 

RL-GCA chooses 4 colors always while the non-intelligent 

GCAs choose less chromatic number. Note that the RL-

GCA provides higher capacity than the non-intelligent 

GCAs. Therefore, excessively pursuing the less chromatic 

number 𝜒(𝐺) is not necessary.  

The reason that the RL-GCA can provide better solution 

is that it can provide end-to-end global optimization. On 

the other hand, for the case of non-intelligent GCAs, the 

tradeoff between the mitigation of interference and the 

segmentation of bandwidth must be carefully considered. 

Therefore, it is an indirect process, and a degree of 

assumptions and simplifications exists. 

 
(a) 6 clusters case 

 
(b) 8 clusters case 

Fig. 6. 𝜒(𝐺) distribution over 100 user location patterns. 

5.3 The comparison about the exploitation rate 𝜺 

In this paper, we adopted the 𝜀 -greedy as the action 

selection policy ( 𝜋 ). However, the different value of 

exploitation rate 𝜀  will affect the convergence speed. 

𝜀 𝜖[0,1], if 𝜀 = 0.9, which means 90% episodes are used for 

exploitation based on the Q-table, while 10% episodes are 

used for exploration based on randomly searching. Actually, 

a certain level of random search is to avoid to fall in local 

optimization due to the lack of exploration. Fig.7 compares 

the convergence speed for different values of 𝜀. When  𝜀 =

0.9, even though the capacity increases very fast at the 

beginning, but it soon gets trapped in a local 

optimization between episode 500 and episode 3000. On 

the other hand, lack of exploitation will have difficulties 

in obtaining the optimized results. When 𝜀 = 0.3  the 

converge is slow because a lot of episodes are “wasted” due 

to random search. In this case of 96 users, 128 antennas 

and 6 clusters, 𝜀 = 0.5 or 0.7 is a better choice. 

 

Fig. 7. The comparison of the exploitation rate ε. 

5.4 The comparison about the learning rate 𝜶 

The learning rate 𝛼 (or the step size) also influences 

how quickly the final results can be obtained. Too large 𝛼 

may results in divergence while too small 𝛼 will lower the 

convergence speed. In Fig. 8, when 𝛼 = 0.1, the training 

converges until around 4500 episodes, and with smaller 

value of 𝛼 = 0.01 , the training even cannot converge 

within 5000 episodes. But if 𝛼 is increased to 1, less than 

1000 episodes is enough for training. However, when 𝛼 

increased to be as large as 5, the training does not work 

well. 

 

Fig. 8. The comparison of the learning rate α 

6. Conclusion 
In this paper, we proposed a reinforcement learning-

based graph coloring algorithm (RL-GCA) for inter-cluster 

interference coordination for cluster-wise distributed MU-

MIMO. It was confirmed that the RL-GCA achieve higher 

link capacity compared with our previously proposed RCN-



 
  
 

 

GCA and the well-known DSATUR. Besides that, an 

interesting conclusion that smaller chromatic number does 

not necessarily achieve higher link capacity was obtained . 

The best chromatic number which maximizes the 

achievable link capacity was shown to be 4. Also based on 

our convergence analysis, the parameter setting, such as 𝛼 

and  𝜀, has a great influence on the convergence speed. 

Too big 𝛼 will result in diverge but too small value is 

time-wasting. Similarly, too big 𝜀 will be easily trapped 

in sub-optimal value, while too small 𝜀 also lower the 

converge speed, therefore should be carefully designed.  

In our future study, we will introduce the neural network 

into our algorithm to form a deep-learning based 

architecture to further reduce the computational 

complexity.  
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