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Abstract  Cluster-wise distributed multi-user multiple-output multiple-input (MU-MIMO) is a promising solution for 

improving the transmission quality in the fifth generation (5G) advanced systems. When the clustering is introduced to reduce 

the huge computational complexity of large-scale MU-MIMO, the inter-cluster-interference (ICI) is produced, thereby reducing 

the sum capacity. Reasonable power allocation can effectively improve the system capacity while the total transmit power 

remains unchanged. Therefore, in order to make up for this loss, in this paper, the uplink/downlink power allocation is considered 

by taking into account the ICI to maximize the sum capacity. A new power allocation method is proposed, which is to maximize 

the sum capacity of the system under the cluster-wise total power constraint and cell-wise total power constraint, respectively, 

while satisfying the minimum user capacity requirement. Then, by computer simulation, the proposed method is compared to 

the user-wise equal power allocation method in terms of the achievable sum capacity. 
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1. Introduction  

Along with increasing mobile data traffic, the use of 

extremely high frequency band e.g. mmWave and the 

denser deployment of access points are demanded. 

However, the deployment of large-scale multi-user 

multiple-output multiple-input (MU-MIMO) with popular 

co-located antenna deployment causes signal blockage 

problem and prohibitively high computational complexity. 

To avoid these two serious problems while achieving the 

improved system performance, we considered a cluster-

wise distributed MU-MIMO system, in which antennas are 

spatially distributed at different locations over the base 

station coverage area (cell), then users and antennas are 

grouped into several separated clusters to perform cluster-

wise small-scale MU-MIMO in parallel to efficiently 

reduce the computational complexity [1]. In return, cluster 

cluster-wise MU-MIMO introduces the inter-cluster-

interference (ICI), which results in the degradation of sum 

capacity of the system [2].  

Certainly, there are many possible ways to mitigate the 

sum capacity degradation due to clustering, such as the 

power allocation, coordinated scheduling between clusters 

and so on. In this paper, we try to solve the problem from 

the aspect of resource allocation optimization. In other 

words, according to the channel state information (CSI) of 

users, the corresponding transmit power are allocated to 

maximize the capacity of the system while keeping the total 

transmit power of uplink and also that of downlink to a 

multiple of the total number of users. Moreover, users need 

to be guaranteed the minimum required capacity for their 

quality of service (QoS) [3]. 

Considering the above, in this paper, we propose a sum 

capacity maximization-based power allocation in our 

considered cluster-wise distributed MU-MIMO with the 

consideration of ICI. And the minimum required user 

capacity constraint and transmit power constraint are 

assumed in both downlink and uplink. For the second 

condition of the power allocation problem, we consider two 

schemes, i.e., cluster-wise constraint to limit the total 

transmit power of each cluster according to the number of 

users in the cluster, and cell-wise constraint to limit the 

total transmit power for whole cell based on the totality 

number of users.  

The rest of this paper is organized as follows. In Chapter 

2, the cluster-wise distributed MU-MIMO is introduced. 

Accordingly, the achievable capacity of downlink and 

uplink are derived. In Chapter 3, we describe the sum 

capacity maximization-based power allocation and 

introduce the sequential quadratic programming (SQP) [4] 

method to solve such a nonlinear inequality constraints 

optimal problem. Then, in Chapter 4, we show the 

simulation results on the sum capacity with our proposed 



 
  
 

 

power allocation and compare with equal power allocation. 

Finally, some conclusions and future studies are given in 

Chapter 5. 

 

2. System model and problem statement 
We consider a single-cell distributed MU-MIMO with 

base station (BS) processing communication system as 

shown in Fig. 1. Over the BS cell, U single-antenna users 

communicate with the BS through A separated distributed 

antennas (DAs). All the users and DAs are joint to form K 

exclusive user-DA clusters by K-means algorithm based on 

their locations [5]. Then, assuming the perfect channel 

state information (CSI) is known by both users and the BS, 

zero-forcing (ZF) based data transmission is utilized in 

both downlink and uplink in each cluster separately to 

eliminate the inter-user-interference (IUI). 

 

Fig. 1 Cluster-wise distributed MU-MIMO system. 

The channel matrix and the ZF weight matrix for the kth 

cluster are represented by Hk,k and Wk=൫Hk,k൯
†
 

respectively, where (A)† denotes the pseudo-inverse of 

matrix A. Assuming that the power spectral density of user 

signal and that of noise have unity variance, we can derive 

the capacity for the ukth user in the kth cluster as 

2

2 11 2

,2
0, 0

2 11 2 2

,
0, 0

(:, )
log 1

(:, ) 1
(:, )

log 1

( ,:) ( ,:)

k

k

k m

m

k

m
m

k

k m

m m

m

u

k

u UK
j

u m m m
m m k j

m

u
u UK

j k k j k k k
m m k j

P

u
C

P
j

j

P
C

P u u






 

  




  

  

 
 
 

  
   
 
 
 
   

  
 

 

 

W

h W
W

W h W

. (1) 

In Eq. (1), Puk denotes the transmit power for the ukth user 

in the kth cluster. A(x,:), A(:,x) and ‖A‖ denote the xth 

row vector, the xth column vector and the Frobenius norm 

of matrix A, respectively.  

Our objective is to maximize the sum capacity of whole 

system constrained by a total transmit power limitation and 

a minimum required user capacity. So, the optimization 

problem is defined as 
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Here, for simplicity, we omit the superscript arrows 

representing the downlink and uplink, because the 

optimization problems are the same for these two 

conditions, but the calculation of the capacity part is 

different as indicated in Eq. (1).  

We also realize that as long as the total transmit power 

of each cluster meets the limitation based on the number of 

users in the cluster, the total power of the whole cell also 

meets the limitation. Therefore, the condition 1 in above 

problem can be modified, as in Eq. (3). 
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In order to clearly distinguish the two power constraints, 

we call the power constraint in Eq. (2) as cell-wise 

constraint. Corresponding to it, the power constraint in Eq. 

(3) is called cluster-wise constraint. The link capacities 

achievable by these two power constraints are compared 

later. 

 

3. Sum capacity maximization-based power 
allocation by sequential quadratic programming   
  As we mentioned above, our objective sum capacity 

maximization problem with constrains are described in Eq. 

(2) and Eq. (3). To solve these two power allocation 

problems, we introduce Sequential Quadratic Programming 

(SQP) algorithm. Because it is a popular and robust 

methods for solving such a nonlinear constrained 

optimization. SQP is generally utilized to solve such a 

nonlinear inequality constrain programming problem, 

commonly expressed by 

 min ( )

subject to ( ) 0,
( ) 0,
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The idea of SQP is to approximate the Hessian matrix of 

the original problem by iteratively solving the quadratic 

programming subproblem  
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by quasi-Newton updating method [6]. In Eq. (5), d is the 

search direction, k is the iteration index, H is the Hessian 

matrix, and   denotes the gradient. The concrete 

realization is as follows. Initialize a starting point x0, and 

approximation H0. Then start the iteration, which mainly 

includes the following three steps: 1) Solve the subproblem 

in Eq. (5) to determine the search direction dk; 2) 

Determine the search step to update xk+1; 3) Update the 

Hessian matrix Hk+1, until the stop condition. 

 

4. Simulation results 
In this Chapter, the considered sum capacity 

maximization problem is implemented by SQP method. 

Also, the two power constraint schemes and the equal 

power allocation case are compared by sum capacity. Here, 

we utilize the fmincon™ solver in MATLAB® throughout 

our simulation. 

In simulation, we normalize the BS cell into a 1by 1 

square area, over which U=64 users and A=128 DAs are 

randomly located following uniform distribution, like 

shown in Fig. 2.  

 

Fig. 2 An example of clustering result in the normalized 

BS cell, K=8  

Throughout the simulation, the DA location remains 

unchanged. Different user locations are generated several 

times to calculate the cumulative distribution function 

(CDF) of sum capacity.  The MIMO channel is 

characterized by distance-depended path loss, log-normal 

shadowing and frequency non-selective Rayleigh fading. 

The specific settings are shown in Table. 1. 

Table. 1 

Number of DAs 128 

Number of users 64 

Number of clusters 4, 16, 64 

Number of times of user 

location generations 

1000 

Path loss exponent 3.5 

Shadowing standard 

deviation [dB] 

8 

Transmit power per user 1 

Minimum required user 

capacity [bps/Hz] 

0.01, 0.1, 0.5  

First, we plot the comparison of CDF of sum capacity 

for equal power (EP) allocation, optimal power (OP) 

allocation with cluster-wise constraint and cell-wise 

constraint in Fig. 3. It is worthy to note that if the 

optimization has no solution under such settings, the output 

sum capacity is equal to the EP case in this comparison. 

 
 (a) minimum required user capacity=0.01bps/Hz 

 
(b) minimum required user capacity=0.1bps/Hz 
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(c) minimum required user capacity=0.5bps/Hz 

Fig. 3 CDF comparison of 3 power allocation schemes, 

K=16 

As can be seen in the above figure, the proposed optimal 

power allocation can significantly improve the sum 

capacity in both downlink and uplink when the required 

user capacity is low. For example, when the required user 

capacity is set to 0.01bps/Hz, the sum capacity @ CDF=50% 

can be improved about 40bps/Hz and 20bps/Hz by cell-wise 

power constraint and cluster-wise constraint separately. As 

the minimum required user capacity increases, the 

improvement of sum capacity by power allocation gets 

smaller. As for the required user capacity is set to 

0.5bps/Hz, the optimal solution can hardly be obtained 

under both power constraint schemes, but the cell-wise one 

is better than the cluster-wise one. According to Fig. 3 (c), 

when CDF is more than 50%, the curves of cluster-wise 

constraint and EP almost coincide, but cell-wise one is 

obviously different. This is because in fact cluster-wise 

constraint is only a solution set of cell-wise constraint, and 

its constraints are stricter, so it is not easy to get the 

optimal solution. 

Without loss of generality, we further compare the three 

power allocation schemes in terms of sum capacity in a 

case of larger number of clusters (K=4) and in an extreme 

case (K=U=64) as shown in Fig. 4. 

 
(a) K=4 

 
(b) K=U=64 

Fig. 4 CDF comparison of 3 power allocation schemes 

The result of Fig. 4 is the same as that of Fig. 3, that is, 

cell-wise constraint is better, and the lower the minimum 

user capacity required, the easier the optimalization is to 

get the optimal solution, and the larger the achievable 

capacity can be reached.  

  Combining with Fig. 3, we can see that when K=4, there 

is a significant improvement in the sum capacity for three 

different values of the minimum required user capacity 

irrespective of cluster-wise power constraint or cell-wise 

power constraint. However, as the number of clusters 

increases, the probability of getting the solution decreases 

and the advantage of our proposed power allocation 

diminishes. When K=16, solution when the minimum 

required user capacity is 0.5bps/Hz cannot be found. When 

K=64, it is found that the capacity of proposed method and 

that of EP are almost the same, in other words, there is 

almost always no solution to our proposed power allocation 

in case of the minimum required user capacity becomes 

0.1bps/Hz. It can be said that our proposed power 
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allocation method is effective in the case of small number 

of clusters. 

  To sum up, the optimal power allocation method 

proposed in this paper improves the minimum user capacity 

and sum capacity in a variety of situations, among which 

cell-wise power constraint can be the best as a whole. 

 

5. Conclusion 
In this paper, we proposed a sum capacity maximization 

-based power allocation method based on SQP algorithm, 

under the total transmit power constraint and the minimum 

user capacity guarantee. Two types of total transmit power 

constraint were considered: cell-wise and cluster-wise. 

From Monte Carlo simulation, we found that the proposed 

sum capacity maximization-based power allocation method 

can greatly improve the sum capacity in the case of small 

number of clusters and/or lower minimum user capacity 

requirement. In addition, compared with cluster-wise 

transmit power constraint, there are more cases that cell-

wise one can get the solution, and its achievable sum 

capacity is higher. Because of its more relaxed constraints, 

the feasible region is larger, in other words, the probability 

of getting the solution that satisfies the constraint becomes 

higher. 

 When the number of clusters increases, the proposed 

method often has no solution, unless the minimum power 

of the user is set to be very small, but this is meaningless 

in reality. Therefore, how to effectively increase the 

capacity when the number of clusters is large, for example, 

when K=U as shown in simulation, will be left as our future 

study.  
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