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Abstract In this paper, the method of moments (MoM) combined with Gauss-Seidel method is applied to the numerical
analysis of a large-scale array antenna with non-uniform sized elements. Numerical analysis shows that the CPU time of the
Gauss-Seidel scheme for solving a matrix equation is proportional to the N2, where N is the number of the array antenna’s
elements. This method can be extended easily for the numerical analysis of a reflectarray.
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1. Introduction
Nowadays, the design of a reflectarray, which

improves a propagation channel, has much attention.[1]
Especially, the design of a large-scale reflectarray is of
great interests. However, the design of the large-scale
reflectarray is difficult because long CPU time is required
for its numerical analysis. On the other hand, it is well
known that the method of moments (MoM) is one of the
efficient methods for numerical analysis of antennas or
scatterers. In the MoM, a NT x NT matrix equation is
solved and the unknown current vector is obtained, where
NT is the number of unknowns. Because the CPU time for
solving matrix equation is dominant in the MoM, how to
solve the matrix equation fast is one of the attractive
research topics.

Direct solvers are popular techniques for solving the
matrix equation. For example, the CPU time of the
Gauss-Jordan method, which is one of the most popular
direct methods, is proportional to NT3. Therefore, when the
scale of the matrix equation becomes very large, the CPU
time increases greatly. The other problem is that direct
methods will lead to enlarging the round-off error [2].

On the other hand, iterative solvers such as Conjugate
Gradient method and Gauss-Seidel method have been
proposed [3][4]. In these iterative methods, matrix-vector
multiplication is carried out and the unknown current
vector is updated iteratively. Because the CPU time for
matrix-vector multiplication is proportional to NT2 and
dominant, matrix-vector multiplication has been
accelerated using various techniques, such as the fast

multipole method (FMM) [5], multilevel fast multipole
algorithm (MLFMA) [6], [7], and the fast inhomogeneous
plane wave algorithm [8]. Due to these techniques, the
total CPU time of the iterative method becomes much
smaller than NT3 when the number of iterations is small.
However, it is well-known that the number of iterations
strongly depends on the problems to be solved.

In our previous study [9], the MoM combined with
Gauss-Seidel method was employed for the numerical
analysis of large-scale array antennas, which consist of
array elements of uniform size. However, the MoM
combined with Gauss-Seidel method has not been applied
for numerical analysis of large-scale array antennas which
consists of array elements of non-uniform size. In this
paper, the MoM combined with the Gauss-Seidel method
is employed for numerical analysis of the large-scale array
antenna with non-uniform sized elements. The
convergence criterion of this algorithm is investigated and
the effectiveness of the method is shown numerically. This
method can be easily applied for numerical analysis of a
large-scale reflectarray.

2. Gauss-Seidel scheme
The important procedure for solving the matrix

equation [Z][I]=[V] for unknown [I] by using the
Gauss-Seidel scheme is to split the matrix [Z] into [S] and
[T] so that the matrix equation becomes

][]][[]][[ VITIS  . (1)

where [S] contains the lower-left triangular part
including the diagonal elements of [Z] , and [T]



contains the upper-right triangular part excluding the
diagonal elements. The iterative scheme for solving
Eq. (1) is given by:
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where I i, S ij and T ij are the elements of the vector [I] ,
matrices [S] and [T] respectively. The superscript ls is the
step number of the iteration. The initial I i (0) is usually
assumed to be zero. This iteration continues until
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for all i at the final LS th step, where Ii indicates the
ideal value of current and e t indicates tolerance of
relative error. The convergence criterion for the
Gauss-Seidel scheme is that all the eigenvalues of the
matrix [S]−1[T] have magnitudes less than unity [10].

Fig.1 Analysis model: large-scale array antenna with
non-uniform sized elements

The analysis model of the large-scale array antenna
with non-uniform sized elements is shown in Fig. 1.
The large-scale array antenna with non-uniform sized
elements consists of a lot of dipole elements with
different length. N is the total number of dipole
elements. d is the space between two adjacent dipole
elements, and is given a constant value (usually 0.5
λ , where λ is the wavelength) . Each dipole
element has one segment. The length of k th dipole is
defined as:

  )5,mod(025.045.0 klk  , (4)

3. ANALYSIS OF CONVERGENCE
Figure 2 shows whether the iteration method can be

applied or not. The value of max[ |Ii (ls+1)-I i (ls) | / |I i| ]
is calculated when iterative steps increase, which is
also called the relative error. In this case, d=λ /2,
et=0.01 and e represents the value of
max[ |I i (ls+1)-I i (ls) | / |I i | ], which means that if e ≤ et,

it’s convergent; if e ≥ e t, it’s not. It is found that
when N equals 100, 200 and 500 respectively, the
errors are almost the same. Figure 2 shows that when
the iterative step is larger than 4, e is smaller than
0.01. Therefore, the convergence condition of
Gauss-Seidel iteration scheme is well satisfied.
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Fig.2 The relative error versus the number of iterative
steps.

Figure 3 shows that relation between relative error e
and array spacing d. It indicates that when d is much
smaller than 0.5λ , the relative error is much larger than et

and obtained current does not converge. When array
spacing is close to 0.5λ , the relative error e becomes very
small. And when array spacing d is larger than 0.5 but
smaller than 0.8 λ , the relative error e becomes large.
And when it’ s near 0.85λ , the value goes back to be
small. As a result, it can be said that the Gauss-Seidel
method shows good convergence when array spacing d is
close to 0.5λ or larger than 0.85λ .

 N=100
 N=300

R
el

at
iv

e 
er

ro
r: 

e

Array spacing: 
0 0.2 0.4 0.6 0.8 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

d/λ

et=0.01

Fig.3 The relative error e versus array spacing d



4. Comparison of CPU time
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Fig.4 CPU time versus total number of elements

In order to show the validity of this method, the CPU
time for solving the matrix equation versus total number
of elements N is shown in Fig.12. The curve of the
Gauss-Jordan method, one of the traditional iteration
methods, is plotted for comparison. As expected, the CPU
time is proportional to N3 by using the Gauss-Jordan
method, while it is proportional to N2 by using
Gauss-Seidel method. The cost saving effect of the
numerical computation is significant.

5. Conclusion
Gauss-Seidel Scheme has been employed to solve

the matrix equation of the MoM analysis for the
large-scale array antenna with non-uniform sized
elements. It is found that the method is simple and
effective to solve this kind of model.
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