
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

　

Numerical Evaluation for Computational Cost of CG-FMM on Typical

Wiregrid Models

Keisuke KONNO†, Qiang CHEN†, and Kunio SAWAYA†

† Department of Electrical Communications Engineering, Graduate School of Engineering, Tohoku
University, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan

E-mail: †{konno, chenq, sawaya}@ecei.tohoku.ac.jp

Abstract The conjugate gradient-fast multipole method (CG-FMM) is one of the powerful methods for analysis

of large-scale electromagnetic problems. It is also known that CPU time and computer memory can be reduced by

CG-FMM but such computational cost of CG-FMM depends on shape and electrical properties of an analysis model.

In this paper, relation between the number of multipoles and the number of segments in each group is derived from

dimension of segment arrangement in four typical wiregrid models. Based on the relation and numerical results

for these typical models, the CPU time per iteration and the computer memory are quantitatively discussed. In

addition, the number of iteration steps, which is related to condition number of impedance matrix and analysis

model, is also considered by a physical point of view.

Key words Method of moments (MoM), Fast multipole method (FMM), Conjugate gradient (CG).

1. Introduction

The Method of Moments (MoM) is one of the powerful

techniques for numerical analysis of antennas and scatter-

ers [1], [2]. Recently, iterative method such as the Conjugate

Gradient (CG) method has been used to solve the MoM

matrix equation in previous studies [3]- [8]. Unlike direct

methods, the CPU time to solve the matrix equation by

CG method is determined by number of iteration steps and

CPU time per iteration. Therefore, computational cost of

CG method is classified into three factors, i.e., the number

of iteration steps, CPU time per iteration, and the computer

memory. The number of iteration steps depends on the anal-

ysis model, while the CPU time per iteration and computer

memory of CG method are both the order of O(N2).

In above three factors, the number of iterativon steps of

CG method has been discussed in a few papers so far and it

has been reported that the number of iteration steps strongly

depends on the condition number of the impedance matrix

Z [6]- [8]. In these papers, however, little attention is paid to

relation between the number of iteration steps and analysis

model, as well as relation between condition number of Z

and analysis model.

On the other hand, it is known that other two factors ex-

cept for the number of iteration steps, namely, the CPU time

per iteration and computer memory of CG method can be

reduced by the Fast Multipole Method (FMM) [9], [10]. It

has been considered that the CPU time per iteration and

computer memory of CG method combined with FMM (CG-

FMM) are both O(N1.5). However, the CPU time per iter-

ation and computer memory in CG-FMM depend on many

parameters for FMM as well as analysis model. Choice of

parameters such as the number of multipoles or a group size

for the two and three dimensional FMM have been discussed

in a few papers [11], [12]. However, parameter choice based

on these papers are not always correct in general since shape

of analysis model, which is highly related to the number of

multipoles L, has not been considered in these guidelines.

In this paper, four typical wiregrid models, which are elec-

trically continuous or separated, and one-dimensional or two-

dimensional, are introduced. It is shown that relation be-

tween the number of multipoles L and the number of seg-

ments in each group K is determined by dimension of seg-

ment arrangement in an analysis model, and the relation is

used to discuss not only the CPU time per iteration but also

the computer memory required for analysis. Based on the

numerical simulation for these typical models, mutual rela-

tion among the number of iteration steps, condition number

of Z and analysis model can be predicted universally from a

physical point of view.

2. Principle of CG-FMM

2. 1 Cojugate Gradient Method

Matrix equation formulated by MoM is expressed by

ZI = V, (1)
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where Z is N × N impedance matrix, V is N− dimensional

known voltage vector, and I is N− dimensional unknown cur-

rent vector. The algorithm of CG method for solving Eq.(1)

is summarized as follows [3]- [8].

CG method for MoM.

● After initial value of I is set to be I0, initial value of

residual vector R0 and correction vector for solution P0 are

calculated as

R0 = V − ZI0,

P0 = Z†R0,

where Z† denotes the conjugate transpose of Z.

● The same procedure is repeated as

αi =
⟨ZPi−1,Ri−1⟩

∥ZPi−1∥2 =

‚

‚Z†Ri−1

‚

‚

2

∥ZPi−1∥2 ,

Ii = Ii−1 + αiPi−1,

Ri = V − ZIi = Ri−1 − αiZPi−1.

●When ∥Ri∥ < ϵ ∥V∥, the iteration is stopped, βi and Pi

is calculated as

βi =

‚

‚Z†Ri

‚

‚

2

∥Z†Ri−1∥2 ,

Pi = Z†Ri + βiPi−1,

where αi and βi are correction coefficients for Ii−1 and Pi−1,

respectively, and ϵ is an error control parameter for the so-

lution.

In the above algorithm, matrix-vector multiplications are

carried out twice in each iteration and CPU time for the

matrix-vector multipication is O(N2). In addition, computer

memory for storing Z is also O(N2).

2. 2 Fast Multipole Method

FMM is a method based on the expression of the scalar

Green’s function using the addition theorem [9], [10]. FMM

can reduce both the CPU time for the matrix-vector multipli-

cation and the computer memory of CG method to O(N1.5)

when M = K =
√

N where M is the number of groups and K

is the number of segments in each group. The matrix-vector

multiplication in each step of CG-FMM can be collectively

carried out by grouping scheme based on the addition the-

orem. In addition, mutual impedance between far segments

are calculated by the addition theorem at every time of the

matrix-vector multiplication in CG-FMM and the impedance

matrix Z is not required to be stored.

Using FMM, mutual impedance between far segments are

represented by

Zfar
mkm′k′ ≈ ωµ0k0

(4π)2

Z 2π

0

Z π

0

smk(k̂)Tmm′s∗m′k′(k̂) sin θdθdϕ,

(2)

where smk(k̂), sm′k′(k̂), and Tmm′ are called “radiation func-

tion”, “receiving function”, and “transfer function”, respec-

tively. Detailed explanation of these functions is rather

lengthy and omitted here (see [14]). Subscript m and m′(=

1, 2, ..., M) are the observation group number and the source

group number, respectively. k and k′(= 1, 2, ..., N/M(= K))

represent segment number in observation and source group,

respectively. Computational cost of CG-FMM depends on

the number of groups M and the number of segments K in

each group.

Another important parameter is the number of multipoles

L, which is truncation number of infinite series Tmm′ . The

number of multipoles L is given by the following empirical

formula

L = k0Dmax + αL ln(k0Dmax + π), (3)

where Dmax is the maximum diameter of the groups and

αL(∼ 0 − 10) is the error control parameter for the transfer

function. In addition, L is also used as the points of double

numerical integration in Eq. (2). In order to obtain accu-

rate results, L point Gauss-Legendre integration in θ and

2L point trapezoidal integration in ϕ are applied to Eq. (2).

Namely, each component of smk(k̂), sm′k′(k̂) as well as Tmm′

are stored as L × 2L = 2L2 discreate data in numerical cal-

culation.

Based on Eq. (2), the matrix-vector multiplication for Zfar

in CG-FMM is calcuated by three steps, namely, the aggre-

gation step (Step 1), the translation step (Step 2), and the

disaggregation step (Step 3). The order of CPU time for the

multiplication of Znear, which denotes the mutual impedance

between near segments, and that of Zfar are shown in Table

1. The computer memory for CG-FMM is also tabulated in

Table 2. In general, the computational cost of O(N1.5) is

realized when M = K =
√

N .

Table 1 CPU time for matrix-vector multiplication in CG-FMM.

Type of multiplication Step CPU time

Multiplication for Znear O(MK2)

Step 1 O(2NL2)

Multiplication for Zfar Step 2 O(2M2L2)∗

Step 3 O(2NL2)

* CPU time for Step 2 is dominant in the most cases

of large-scale models.

3. Typical Models

Four typical models described in the present paper are

shown in Fig. 1. Fig. 1(a) shows one-dimensional side-by-

side dipole array antenna (Model 1), where dipole element,
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(a) One-dimensional side-by-side dipole array antenna (Model 1).
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Figure 1 Four typical wiregrid models.

Table 2 Computer memory for CG-FMM.

Stored contents Computer memory

V, I,P,R O(N)

W (θ) O(L)

Znear
mkm′k′ O(MK2)

smk(k̂) and sm′k′ (k̂) O(2NL2)

Tmm′ (k0rmm′ , k̂ · r̂mm′ ) O(2M2L2)

having length l and radius a is arrayed periodically. Each

element is divided into K wire segments.

Fig. 1(b) shows long dipole antenna (Model 2), having

length l (≫ λ) and radius a. The dipole antenna is divided

into N wire segments.

Fig. 1(c) shows two-dimensional array of conducting pla-

nar scatterers (Model 3). The planar element with a size of

dx × dy is arrayed periodically. Each element is divided into

K wire segments with radius a.

Fig. 1(d) shows a planar conductor (Model 4). A planar

element with a size of dx×dy is divided into N wire segments

with radius a.

In models 1 − 3, periodicity of the group and segment lo-

cation are both satisfied. In the model 4, the group location

Table 3 Relation between L and K.

Segment arrangement Relation between L and K

1D (Models 1 and 2) L ∝ K

2D (Models 3 and 4) L2 ∝ K

Table 4 Computer memory reduction using periodicity in CG-

FMM.

Type of periodicity Required computer memory

in analysis model

Znear
mkm′k′ Tmm′ smk, sm′k′

None O(MK2) O(2M2L2) O(2NL2)

Group location O(MK2) O(2ML2) O(2NL2)

Group and segment O(K2) O(2ML2) O(2KL2)

location

is only periodic in this model. Since the uniform grouping

for segments is difficult, non-uniform grouping scheme and

versatile program using CG-FMM is used for analysis of the

model 4.

Relation between the number of multipoles L and seg-

ments in each group K is shown in Table 3. In general,

the number of segments K is proportional to (Dmax/λ)2

for two-dimensional arrangement, while K is proportional
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Figure 2 Number of iteration steps and condition number of Z.

to (Dmax/λ) for one-dimensional arrangement. Substituting

the relation between K and Dmax into Eq. (3), the relation

between L and K shown in Table 3 can be easily derived and

shown in Table 3.

The use of periodicity in CG-FMM can reduce the com-

puter memory required for analysis as shown in Table 4. By

using Tables 2 - 4, the computer memory required for CG-

FMM corresponding to each analysis model can be easily

estimated. In a similar way, CPU time per iteration in CG-

FMM can be also predicted by Tables 1 and 3.

4. Numerical Results

Numerical analysis of four typical models is carried out us-

ing the Richmond’s MoM [2]. Dell Precision PWS 380 with

2 GB RAM is used for all numerical calculation. ϵ = 10−4 is

used for the convergence criterion of CG-FMM and αL = 2

is employed to Eq. (3) for sufficient truncation number.

In addition, the self impedance and the mutual impedance

between segments in adjacent groups are calculated by the

MoM rather than by FMM.

4. 1 Number of Iteration steps and Condition

Number

The number of iteration steps required for CG method and

CG-FMM and the condition number κ of Z for four models

are shown in Fig. 2. The condition number κ of Z is defined

by

κ =

r

λmax

λmin
. (4)

where λmax and λmin are the maximum and minimum eigen-

value of Z†Z, respectively. As shown in Fig. 2, the tendency

of the condition number κ is almost the same to that of the

number of iteretion steps determined by error control pa-

rameter. From those results, it is found that the condition

number is highly related to that of the number of iteretion

steps.

Large κ means that the impedance matrix Z is ill-

conditioned and convergence of the solution obtained in it-

erative procedure is slow. On the other hand, small κ means

that the impedance matrix Z is well-conditioned and conver-

gence of the solution is fast.
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Figure 3 CPU time per iteration for analysis.

From a physical point of view, condition number κ indi-

cates how the solution I in Eq. (1) is sensitive to the values

of the elements in the impedance matrix Z. When electri-

cal connection between segments in the model is strong due

to linear-connection of segments or strong mutual coupling

such as Models 2 and 3, the condition number κ increases as

shown in Figs. 2(b) and 2(c), and I is sensitive to Z. On

the other hand, when electrical connection between segments

in the model is weak due to small mutual coupling or grid-

connection of segments such as Models 1 and 4, condition

number κ is small as shown in Figs. 2(a) and 2(d), and I

is not sensitive to Z. Constant κ shown in Figs. 2(a) and

2(c) means that mutual coupling effect to an element does

not change anymore even when M increases.

4. 2 CPU Time per Iteration

The CPU time per iteration for analysis of four typical

models is shown in Fig. 3. It is found that the CPU time

per iteration of CG-FMM is O(N2) for the Models 1 and

2, while that for the Models 3 and 4 is reduced to O(N1.5).

Using L ∝ K as shown in Table 3, it can be derived from

Table 1 that the CPU time per iteration for analysis of one-

dimensional models is O(N2), which is independent of the

value of M , because the major CPU time of Step 2 in Ta-

ble 1 is O(N2). By these observations, it is concluded that

the CPU time per iteration to analyze an antenna which has

one-dimensional segment arrangement can not be reduced by

CG-FMM.

4. 3 Computer Memory

The order of the computer memory required for analysis

of each model can be theoretically derived by Tables 2 - 4

without running programs and is tabulated in Table 5. From

the Table 5, it is found that the computer memory required

for the analysis of any models is smaller than O(N2) in CG-

FMM. For the array antenna/scatterer such as the Models

1 and 3, the computer memory for smk and sm′k′ is domi-

nant for the total computer memory when M is very small.

On the other hand, the computer memory for Tmm′ is dom-

inant for the total computer memory when M is larger than

K. Therefore, the order of the computer memory required

for the analysis varies as O(K3) → O(N) for Model 1 and
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Table 5 Computational cost of CG-FMM for four typical wiregrid models.

Item Model 1 Model 2 Model 3 Model 4

Properties of Segment arrangement 1D 1D 2D 2D

analysis model Segment connection Linearly connected Linearly connected Grid connected Grid connected

Number of elements Array Single Array Single

Type of periodicity Group location Used Used Used Used

used in CG-FMM Segment location Used Used Used Not used

Relation between L and K L ∝ K L ∝ K L2 ∝ K L2 ∝ K

Parameter setting on grouping K = Const. M = K =
√

N K = Const. M = K =
√

N

Number of iteration steps Const. O(N) O(N0.5) → Const. O(N0.25)

Computational cost CPU time per iteration O(N2) O(N2) O(N) → O(N1.5) O(N1.5)

Total CPU time O(N2) O(N3) O(N1.5) O(N1.75)

Computer memory O(K3) → O(N) O(N1.5) O(K2) → O(N) O(N1.5)

O(K2) → O(N) for Model 3.

The order of the number of iteration steps, CPU time per

iteration, total CPU time and computer memory is summa-

rized in Table 5.

5. Conclusion

In this paper, relation between the computational cost of

CG-FMM and the analysis model was quantitatively evalu-

ated by numerical simulation for four typical wire antennas

or wiregrid models. It is found that the number of itera-

tion steps required for the analysis by CG-FMM depends

on the condition number of Z. From discussion of relation

between the condition number κ and electrical properties of

the models, it is shown that the condition number κ becomes

large due to linear-connection of segments or strong mutual

coupling between elements. Similarly, it is shown that the

condition number κ becomes small due to grid-connection of

segments exist or weak mutual coupling between elements.

The computer memory required for the analysis are reduced

from O(N2) for all models by the use of CG-FMM. On the

other hand, it is shown that the CPU time per iteration can

be reduced only for models which has two-dimensional seg-

ment arrangement in each group.
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