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Abstract Although the contrained interpolation profile (CIP) method has a smaller numerical dispersion when
compared with the standard Yee’s finite difference time domain (FDTD) algorithm, the electric and magnetic field
arrangements of CIP method make it difficult to model antennas into the analysis space. A hybridization of CIP
method and FDTD method is proposed to solve the problems of large- or long-distance propagation space including
antennas in this paper. The boundary conditions between CIP and FDTD method are also considered and validated.
The results show that the numerical dispersion of the hybrid CIP-FDTD method is almost same as that of the CIP
method, which is superior to that of the FDTD method.
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. or higher-order finite differences method such as Ty(2,4) or
1. Introduction )
Ty(2,6) scheme [3]0 [5]. However, the complexity of compu-

The Finite-Difference Time-Domain (FDTD) method has
been widely used in the computational electromagnetics.
However, Yee’s FDTD method suffers from numerical disper-
sion. Since the velocity is a function of the direction of travel,
the discretized medium is anisotropic. This anisotropy gives
rise to a direction-dependent phase error [2]. These errors
are accumulated as the numerical wave propagates, limiting
the accuracy of FDTD for solving some problems, such as a
long-distance propagation problem.

To reduce the error accumulation and increase the accu-
racy of time-domain solutions, many researchers have tried
to improve FDTD algorithms that have smaller dispersion er-

rors. One of this solutions is the larger computational stencil

tation is increased and difficult treatments to the absorbing
boundary condition are required.

The characteristic-based Contrained Interpolation Profile
(CIP) method [6]- [8] proposed by Yabe and co-workers is
applied to the computational electromagnetics because CIP
method can accurately solve the hyperbolic equations with
a small dispersion and stable scheme with third-order accu-
racy in space [9]. So many researchers have tried to solve the
electromagnetic problems with CIP method [11]- [14]. How-
ever the arrangement of electric and magnetic fields which
exist at the same location in CIP method makes it difficult
to model an antenna into CIP region.

A hybridization of the CIP and FDTD methods with



a boundary condition between two regions in the two-
dimensional space is proposed in this study. In the total
analysis region, antennas are modelled in the FDTD region
and empty space for wave propagation is implemented by
CIP scheme. A suitable boundary condition between both
regions is also developed. The reflection coefficient from the
proposed boundary is numerically computed to verify the
hybrid method. The phase error of the hybrid CIP-FDTD
method is evaluated and compared to that of FDTD and CIP
method.

2. Formulation of Maxwell equations
including dielectric media for CIP

method

In this section, the CIP algorithm for Maxwell equations
in one dimension is explained [15]. One-dimensional Maxwell

equations are described as
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where ¢, ;4 and o are the permittivity, permeability and the
conductivity of the medium, respectively. To apply CIP al-
gorithm, Egs.(1) and (2) are modified by determining eigen-
values and eigenfunctions:
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where, F* = E,+ MH - is the invariant quantity of char-
acteristics, AT = 1 / \/m is the eigenvalue which repre-
sents the speed of light in each medium. However, Eq.(3) is
not an absolute advection equation because there is a term
of E, left in the right side of the equation. Eq.(3) can be

transformed using time splitting method as follows:
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Now Eq.(4) can be calculated by CIP method because the
equation is a complete advection equation and Eq.(5) is ap-
plied to the finite difference schemes.

When there are dielectrics in analysis space, there is a dis-
continuity between two different materials as shown in Fig.1
and the differences of the speed of light between two mate-
rials have to be taken into account in the calculation. The
signs (+) and (-) denote the left and right characteristics of
the intrinsic impedance and the speed of light of each ma-
terial. The quantities of characteristics for each side can be

represented as follows:
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Fig. 1 Treatment of boundary between two different media
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F™* and G™* are the quantities of characteristics in left and
right media, respectively. These quantities are called Rie-
mann’s invariable quantities which do not change during the
time development. Thus, the fields at the next step can be

calculated by equating two invariant quantities.
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Byt x [ Ao = EP [ e (10)

So that E;Li and H?* can be eventually calculated by fol-

lowing equations:
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where,

To calculate the nonadvection term represented by Eq.(5),

the forward difference method is applied as follows:

Byt = (1- gAt) fod (12)

3. Boundary Condition between CIP and
FDTD region

In the present analysis, FDTD method is used to the cur-
rent sources and the CIP method is applied in the rest of
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analysis region which do not include the source. Because the
FDTD method uses the leapfrog arrangement of the field
points of the electric and magnetic fields in the calculation
but the field points in the CIP region are located at the same
position in the cells, boundary condition at the interface be-
tween both two regions is required. The arrangement of elec-
tric and magnetic fields at the boundary condition is shown
in Fig. 2. The field transition between FDTD and CIP meth-
ods is occured at the position i. The field components nearby
the boundary interface is defined in the way shown in Fig.
3. First, the electric field component E, of FDTD and CIP

method are both located at the center of cells, so that the

cip n|FDTD
i = EZ |” .
In order to obtain the magnetic field H,|“"" and H,|°'" at

substutition can be done directly by E7|

the position (7, j) in the hybrid region, average of the mag-

netic field components HZ|CIP and Hy|CIP are evaluated as

follows:
ncrp 1 n|FDTD n|FDTD
Hyl ;" = 5 (Hw lij—1/2 + Ha |m’+1/2) ’ (13)
nicrp 1 n|FDTD n|FDTD
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The averaging method is also applied to the magnetic field
components Hr~ /2 HITY?, H;71/2 and H§+1/2 because
these components in the FDTD region do not exist at the
time step n. After all of electric and magnetic field compo-
nents at the boundary are retrieved from the FDTD region,
they are used in the CIP region. It should be noted that
the hybrid region is not included in the field calculation in
this process, but its field values are applied for the compu-

tation of all field components at the position (i + 1,j) in
cIp
i+1,5

is utilized to calculate the magnetic field Hﬂiﬁ%ﬂ by the

ordinary Yee’s algorithm according to the following update

the CIP region. Then, the electric field component E.|

procedures:
e FDTD _ g1 FDTD
Y i+1/2,5 Y i+1/2,5
At n|CIP n|FDTD
+ m (Ez |i+1,j - b |” ) : (15)

The electric and magnetic field components in both analysis
regions are all computed by this process. It is required to
save the magnetic field values of the last computation be-
cause the temporal averaging has to be done before the CIP
calculation starts in the next step. Finally, the cyclic com-
putation are done until the required time step N. Flowchart
of the hybrid CIP-FDTD method is summarized in Fig. 4.

4. Numerical simulation and discussion

In this paper, the validation of the hybrid CIP-FDTD
method with the proposed boundary condition is demon-
strated and the investigation of its dispersion errors or phase
error accumulation is also investigated and discussed by

turns in the following subsections.
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Fig. 2 The arrangement of electric and magnetic field compo-
nents around the boundary between FDTD and CIP re-
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Fig. 3 diagram showing the calculation scheme of the fields

around the boundary during the time development

4.1 Validation of proposed boundary condition

Numerical simulations of the present CIP-FDTD method
are performed in a truncated analysis region of two-
dimensional plane. The size of the plane is 800 x 400 cells.
One half of the analysis region is the FDTD region, and the
other is the CIP region. FDTD and CIP regions are seper-
ated by the proposed boundary at the center as illustrated
in Fig. 5. Two points s1,s2 are obsevation points of wave-
form at the location z = 390Ax, and 410Ax. The reflection
coefficient was calculated to confirm the validity of proposed
method. In order to evaluate the reflected field from the
boundary, an incident Gaussian plane wave was applied at
x = 350Az in FDTD region. The first-order Mur’s absorbing

boundary condition was utilized to terminate the trancated
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Fig. 4 Flowchart of the hybrid CIP-FDTD method
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Fig. 5 Analysis model for the calculation of reflection from the

boundary

space at the left and right boundary illustrated in the Fig 5.
Although the problem is one-dimensional, two-dimensional
numerical analysis was performed and the top and bottom
boundaries are assumed to be perfect magnetic wall. In order
to evaluate the field reflected by the boundary and transmit-
ted into CIP region through the boundary, transmission and

reflection coefficient defined by

Reflection Coefficient [R| [dB]
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Frequency [GHz]

Fig. 6 Reflection coefficients of the CIP/FDTD boundary
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Fig. 7 Analysis model (a) FDTD Model (b) CIP-FDTD Model

F(ESHP
T = 7;(Emc)) (16)
inc _ pCIP
Rel_p= TE—ETT) (17)

F(ET)

are used, where F(-) denotes the Fourier transformation.
E"¢ and ES!T were fields observed at the points s; and
s2 respectively. The reflection and transmission coefficients
were normalized by the incident field.

The numerical results of the refection are shown in Fig.
6. The reflection coefficient increases as the frequency in-
creases over broad ranges. The result shows that the electro-
magnetic waves can propagate from FDTD region into CIP
region through the proposed boundary with the reflection
coefficient smaller than -30dB below 10GHz when the cell
size Az is lmm. The reflection coefficient increases as the
cell size increases and is almost proportional to the cell size.

4.2 Numerical dispersion error

In order to investigate the numerical dispersion error of
each computation method, two-dimensional numerical anal-
yses were performed. Fig.7 shows the model for analysis.
The incident field was applied at the center of analysis space.
The size of the analysis space is 400 x 400 cells with the same
cell sizes Az = Ay = 6mm. There is no need to trancate the

analysis space with any boundary condition in the case of

S/
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Fig. 8 Numerical phase velocity versus cell size of the FDTD
method
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Fig. 9 Numerical phase velocity versus cell size of the CIP

method

CIP method. The discrete Fourier transform was performed
at every point of calculation for the frequency from 0.5GHz
to 10GHz with 0.5GHz interval.

Numerical phase velocity at different propagation angles
of 0°, 30° and 45° direction in a two-dimensional analysis
space is shown in Fig.8-10. respectively, whereas the worst
velocity error occurs at 45° direction in FDTD method, the
error is least in the 0° direction. The results for the cases
of A = Az = Ay = Xo/20,0/10 and Ao/5 are summa-
rized in the Table 1. The velocity error of FDTD method for
A = Xo/5 is 8.3%, at the direction of 45° which means that
a sinusoidal numerical wave traveling over a 10\ distance
would yield a lagging phase error of about 149.45°. These
accumulative errors may be troublesome for the analysis of
scattering structures involving phase cancellation such as
the propagation characteristic analysis of MIMO (multiple-
input multiple output) system. On the other hand, the CIP
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Fig. 10 Numerical phase velocity versus cell size of the CIP-
FDTD method
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Table. 1 The comparison of numerical phase errors between each

method
phase errors per one wavelength [deg.]
FDTD CIP CIP-FDTD
0° 0.88 0.38 0.36
A =25Az 30° 0.53 0.62 0.56
45° 0.40 0.69 0.62
0° 3.44 0.27 0.29
A =10Az 30° 1.12 1.54 1.51
45° 0.32 1.94 1.90
0° 14.94 0.52 0.59
A =5Azxz 30° 4.62 5.36 5.12
45° 0.48 6.76 6.69

method has superior characteristics of dispersion error as il-
lustrated in Fig. 9. The lagging phase for 10\o distance of
propagation is only 66.9° in the worst case which is much
less than that of the FDTD method.

The dispersion errors of the proposed CIP-FDTD method

— 5 —
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Fig. 12 Numerical phase velocity versus propagation angle at
A= 10Ax

is shown in Fig.10. CIP-FDTD method yields the similar
phase error with CIP method. The numerical phase veloc-
ity versus propagation angle in the cases A\ = 10Az and
A = 5Ax are shown in Fig.12 and Fig.11, respectively. When
A = 10Az, the worst error in FDTD occurs at § = 0°, which
is about 1% delay from the normal light velocity in the vac-
uum. However, the worst errors of CIP and CIP-FDTD oc-
curs at § = 45°, with the phase velocity error about 0.5%
which is about half of FDTD result.
that the CIP-FDTD yields better propagation characteris-
tics than that of FDTD.

Thus, it is proved

5. Concluding remarks

In this paper, a hybrid CIP-FDTD method is proposed as a
new technique to solve a problem of the large or long distance
propagation with an antenna included in the analysis space.
The boundary conditions between the FDTD method and
the CIP method was considered and implemented to main-
tain the continuity of the fields by utilizing the averaging
value of magnetic fields. When an incident field is applied in
the FDTD region, the numerical reflection coefficient of the
electric fields is significantly small in the case an incident field
is applied in the FDTD region. Furthermore, the phase er-
ror of the FDTD, CIP, and hybrid method was investigated.
The results verify that the CIP-FDTD method yields small
phase error similar to CIP method. The proposed method
can be extended to the three-dimensional problem which will
be further investigated in the future.
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